

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: NF Monographs
DocId: GUID-6A0B7839-AA76-4043-84F4-E09C64C7D423_4_en-US
DOI: https://doi.org/10.31003/USPNF_M89255_04_01
DOI Ref: 7fk31

© 2025 USPC
Do not distribute

Xylitol

$C_5H_{12}O_5$ 152.15
Xylitol.

DEFINITION

Xylitol contains NLT 98.5% and NMT 101.0% of $C_5H_{12}O_5$, calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)▲ (CN 1-May-2020)

Sample: Undried

- B. The retention time of the xylitol peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: Acetonitrile and water (20:80)

System suitability solution: 2.5 mg/mL of [USP Galactitol RS](#) and 25 mg/mL of [USP Xylitol RS](#) in *Mobile phase*

Standard solution: 25 mg/mL of [USP Xylitol RS](#) in *Mobile phase*

Sample solution: 25 mg/mL of Xylitol in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 192 nm

Column: 8.0-mm × 30-cm; 7-μm packing L34

Column temperature: 80°

Flow rate: 0.5 mL/min

Injection size: 25 μL

System suitability

Sample: System suitability solution and Standard solution

[NOTE—The relative retention times for xylitol and galactitol are about 1.0 and 1.10, respectively.]

Suitability requirements

Resolution: NLT 2.0 between galactitol and xylitol, System suitability solution

Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of xylitol ($C_5H_{12}O_5$) in the portion of sample taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of xylitol from the *Sample solution*

r_s = peak response of xylitol from the *Standard solution* C_s = concentration of [USP Xylitol RS](#) in the *Standard solution* (mg/mL) C_u = concentration of the *Sample solution* (mg/mL)**Acceptance criteria:** 98.5%–101.0% on the anhydrous basis

IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.5%

REDUCING SUGARS

Sample: 500 mg**Analysis:** Dissolve the *Sample* in 2.0 mL of water in a 10-mL conical flask. Into a similar flask, pipet 2 mL of a 0.5 mg/mL dextrose solution.

To each flask add 1 mL of alkaline cupric tartrate TS, heat to boiling, and cool.

Acceptance criteria: Any turbidity in the xylitol flask is NMT that in the dextrose flask, in which a reddish-brown precipitate forms (0.2% reducing sugars, as dextrose).

- [LIMIT OF OTHER POLYOLS](#)

Mobile phase: Acetonitrile and water (20:80)**System suitability solution:** 0.5 mg/mL each of [USP L-Arabinitol RS](#), [USP Galactitol RS](#), [USP Mannitol RS](#), and [USP Sorbitol RS](#), and 100 mg/mL of [USP Xylitol RS](#) in *Mobile phase***Standard solution:** 0.5 mg/mL each of [USP L-Arabinitol RS](#), [USP Galactitol RS](#), [USP Mannitol RS](#), and [USP Sorbitol RS](#) in *Mobile phase***Sample solution:** 100 mg/mL of Xylitol in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 192 nm**Column:** 8.0-mm × 30-cm; 7-μm packing L34**Column temperature:** 80°**Flow rate:** 0.5 mL/min**Injection size:** 25 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for L-arabinitol, mannitol, xylitol, galactitol, and sorbitol are about 0.76, 0.81, 1.0, 1.12, and 1.22, respectively.]

Suitability requirements

Resolution: NLT 1.5 between all adjacent polyol peaks, *System suitability solution***Relative standard deviation:** NMT 5.0% for the galactitol peak, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each polyol (L-arabinitol, galactitol, mannitol, or sorbitol) in the portion of sample taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of the individual polyol from the *Sample solution* r_s = peak response of the individual polyol from the *Standard solution* C_s = concentration of the individual polyol in the *Standard solution* (mg/mL) C_u = concentration of the *Sample solution* (mg/mL)**Acceptance criteria:** The sum of the polyols is NMT 2.0%, calculated on the anhydrous basis.

SPECIFIC TESTS

- [WATER DETERMINATION, Method I \(921\)](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers.

• [USP REFERENCE STANDARDS \(11\)](#)[USP D-Arabinitol RS](#)[USP Galactitol RS](#)[USP Mannitol RS](#)[USP Sorbitol RS](#)[USP Xylitol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
XYLITOL	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 37(4)

Current DocID: GUID-6A0B7839-AA76-4043-84F4-E09C64C7D423_4_en-US**DOI: https://doi.org/10.31003/USPNF_M89255_04_01****DOI ref: [7fk31](#)**

OFFICIAL