

Status: Currently Official on 18-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-3C267BC4-1AB1-4394-B39C-40E529CCB8BF_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M89238_04_01
 DOI Ref: g29io

© 2025 USPC
 Do not distribute

Xylazine Hydrochloride

$C_{12}H_{16}N_2S \cdot HCl$ 256.79

4H-1,3-Thiazin-2-amine, *N*-(2,6-dimethylphenyl)-5,6-dihydro-, monohydrochloride.

5,6-Dihydro-2-(2,6-xylidino)-4H-1,3-thiazine hydrochloride CAS RN®: 23076-35-9; UNII: NGC3S0882S.

» Xylazine Hydrochloride contains not less than 98.0 percent and not more than 102.0 percent of $C_{12}H_{16}N_2S \cdot HCl$.

Packaging and storage—Preserve in tight containers. Store at 25°, excursions permitted between 15° and 30°.

Labeling—Where it is intended for veterinary use only, the label so states.

USP REFERENCE STANDARDS (11)—

[USP Xylazine Hydrochloride RS](#)

Identification—

Change to read:

A: [▲ Spectroscopic Identification Tests \(197\), Infrared Spectroscopy: 197K](#)▲ (CN 1-May-2020) ·

B: [Thin-Layer Chromatographic Identification Test \(201\)](#)—

Test solution: 5 mg per mL, in methanol.

Developing solvent system: methanol and ammonium hydroxide (98.5:1.5).

Procedure—Separately apply 1 μ L of the *Test solution* and the *Standard solution*. Allow the applications to dry with the aid of a stream of nitrogen, develop in a saturated chromatographic chamber, and dry the plate in a current of air: the size, intensity, and R_F value of the principal spot obtained from the *Test solution* correspond to those of the principal spot obtained from the *Standard solution*.

MELTING RANGE (741): between 164° and 168°.

pH (791): between 4.0 and 6.0, in a solution (1 in 100).

Loss on Drying (731)—Dry it at 105° for 4 hours: it loses not more than 1.0% of its weight.

Residue on Ignition (281): not more than 0.1%.

Chromatographic purity—Examine the chromatogram obtained from the *Assay preparation*. Calculate the percentage of impurities in the Xylazine Hydrochloride taken by the formula:

$$100r_s/(r_u + r_s)$$

in which r_s is the sum of the areas of all the impurity peaks observed; and r_u is the area of the xylazine peak: the sum of the impurity responses is not greater than 2.0%.

Assay—

Mobile phase—Dissolve 6.0 g of sodium 1-heptanesulfo nate in 2500 mL of water, add 60 mL of glacial acetic acid, dilute with water to 3000 mL, and mix. Prepare a mixture of 2200 mL of this solution and 1800 mL of methanol, and pass through a filter having a 0.5- μ m or finer porosity. Make adjustments if necessary (see *System Suitability* under [Chromatography \(621\)](#)).

Standard preparation—Prepare a solution of [USP Xylazine Hydrochloride RS](#) in *Mobile phase* having a known concentration of about 1 mg per mL.

Assay preparation—Transfer about 25 mg of Xylazine Hydrochloride, accurately weighed, to a 25-mL volumetric flask, dissolve in and dilute with *Mobile phase* to volume, and mix.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 254-nm detector, a 2-mm \times 2-cm guard column that contains packing L1, and a 3.9-mm \times 30-cm analytical column that contains packing L1 and is maintained at a constant temperature of about 40°. The flow rate is about 2.5 mL per minute. Chromatograph the *Standard preparation*, and record the peak responses as directed for *Procedure*: the relative standard deviation for replicate injections is not more than 2.0%. [NOTE—After daily use, rinse the column with 100 mL of acetonitrile and with 100 mL of methanol, and store the column containing methanol.]

Procedure—Separately inject equal volumes (about 20 μ L) of the *Standard preparation* and the *Assay preparation* into the chromatograph, record the chromatograms, and measure the responses for the major peaks. Calculate the quantity, in mg, of $C_{12}H_{16}N_2S \cdot HCl$ in the portion of Xylazine Hydrochloride taken by the formula:

$$25C(r_u/r_s)$$

in which C is the concentration, in mg per mL, of [USP Xylazine Hydrochloride RS](#) in the *Standard preparation*; and r_u and r_s are the areas of the xylazine peak responses in the chromatograms obtained from the *Assay preparation* and the *Standard preparation*, respectively.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
XYLAZINE HYDROCHLORIDE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 50(6)

Current DocID: [GUID-3C267BC4-1AB1-4394-B39C-40E529CCB8BF_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M89238_04_01

DOI ref: [g29io](#)

OFFICIAL