

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-18157354-8352-4D39-9521-C4936DF0ADBE_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M88770_04_01
 DOI Ref: 3vp9r

© 2025 USPC
 Do not distribute

Warfarin Sodium

$C_{19}H_{15}NaO_4$ 330.31

2H-1-Benzopyran-2-one, 4-hydroxy-3-(3-oxo-1-phenylbutyl)-, sodium salt;
 3-(α -Acetonylbenzyl)-4-hydroxycoumarin sodium salt;
 Sodium 2-oxo-3-(3-oxo-1-phenylbutyl)-2H-chromen-4-olate CAS RN®: 129-06-6; UNII: 6153CWM0CL.

DEFINITION

Warfarin Sodium is an amorphous solid or a crystalline clathrate. The crystalline form consists principally of warfarin sodium and isopropyl alcohol in a 2:1 molecular ratio. It contains NLT 8.0% and NMT 8.5% of isopropyl alcohol. Warfarin Sodium contains NLT 97.0% and NMT 102.0% of warfarin sodium ($C_{19}H_{15}NaO_4$), calculated on the anhydrous basis for the amorphous form or on the anhydrous and isopropyl alcohol-free basis for the crystalline form.

IDENTIFICATION

Change to read:

• A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K** ▲ (CN 1-May-2020)

Standard: Use [USP Warfarin RS](#).

Sample: Dissolve 100 mg in 25 mL of [water](#), and adjust with [hydrochloric acid](#) to a pH of less than 3, using short-range pH indicator paper. Stir the mixture, and allow the precipitate to coagulate. Filter the mixture, wash the precipitate with four, 5-mL portions of [water](#), and dry under vacuum over [phosphorus pentoxide](#) for 4 h. Use the warfarin obtained.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- C.

Methoxyphenylacetic reagent: Dissolve 2.7 g of [methoxyphenylacetic acid](#) in 6 mL of [10% tetramethylammonium hydroxide aqueous solution](#), and add 20 mL of absolute alcohol.

Diluted ammonia: Dilute 41 g of [ammonium hydroxide](#) with [water](#) to 100 mL.

Ammonium carbonate solution: 158 mg/mL of [ammonium carbonate](#) in [water](#)

Sample solution: Dissolve 30 mg of Warfarin Sodium in 0.5 mL of [water](#).

Analysis: Add 1.5 mL of *Methoxyphenylacetic reagent* to the *Sample solution*, and cool in ice water for 30 min.

Acceptance criteria: A voluminous, white, crystalline precipitate is formed. Place the precipitate in a water bath at 20° and stir for 5 min. The precipitate does not disappear. Add 1 mL of *Diluted ammonia*. The precipitate dissolves completely. Add 1 mL of *Ammonium carbonate solution*. No precipitate is formed.

ASSAY

• **PROCEDURE**

Buffer: Transfer 1.36 g of [monobasic potassium phosphate](#) to a 200-mL volumetric flask, and dissolve in 50 mL of [water](#). Add 39.1 mL of 0.2 N [sodium hydroxide](#), and dilute with [water](#) to volume. Adjust with [sodium hydroxide](#) or [phosphoric acid](#) to a pH of 7.4 ± 0.1 .

Mobile phase: [Methanol](#), [glacial acetic acid](#), and [water](#) (64:1:36)

Standard stock solution: 0.376 mg/mL of [USP Warfarin RS](#) prepared as follows. Transfer [USP Warfarin RS](#) to a suitable volumetric flask, and dissolve in [0.1 N sodium hydroxide](#) equivalent to 39% of the final volume. Add 0.2 M [monobasic potassium phosphate](#), equivalent to 25% of the final volume, and dilute with [water](#) to volume.

Standard solution: Transfer 5 mL of *Standard stock solution* and 15 mL of *Buffer* into a conical flask, and mix.

Sample stock solution: 0.4 mg/mL of Warfarin Sodium prepared as follows. Transfer 100 mg of Warfarin Sodium, accurately weighed, to a 250-mL volumetric flask, and dissolve in 97.8 mL of [0.1 N sodium hydroxide](#). Add 62.5 mL of 0.2 M [monobasic potassium phosphate](#), and dilute with [water](#) to volume.

Sample solution: Transfer 5 mL of *Sample stock solution* and 15 mL of *Buffer* into a conical flask, and mix.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 280 nm

Column: 4.6-mm × 25-cm; packing [L7](#)

Flow rate: 1.4 mL/min

Injection volume: 20 µL

System suitability

Sample: Standard solution

Suitability requirements

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of warfarin sodium ($C_{19}H_{15}NaO_4$) in the portion of Warfarin Sodium taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of warfarin from the *Sample solution*

r_S = peak response of warfarin from the *Standard solution*

C_S = concentration of [USP Warfarin RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Warfarin Sodium in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of warfarin sodium, 330.31

M_{r2} = molecular weight of warfarin, 308.33

Acceptance criteria: 97.0%–102.0% on the anhydrous basis for the amorphous form or on the anhydrous and isopropyl alcohol-free basis for the crystalline form

IMPURITIES

• ORGANIC IMPURITIES

Diluent: [Methanol](#) and [water](#) (25:75)

Mobile phase: [Acetonitrile](#), [glacial acetic acid](#), and [water](#) (32:1:68)

Standard stock solution: 0.12 mg/mL each of [USP Warfarin RS](#) and [USP Warfarin Related Compound A RS](#) prepared as follows. Transfer [USP Warfarin RS](#) and [USP Warfarin Related Compound A RS](#) to a suitable volumetric flask, and add [0.1 N sodium hydroxide](#) and [methanol](#) equivalent to 2% and 25% of the final volume, respectively. Dilute with [water](#) to volume.

Standard solution: 2.4 µg/mL each of [USP Warfarin RS](#) and [USP Warfarin Related Compound A RS](#) in *Diluent*, from *Standard stock solution*

Sample solution: 0.8 mg/mL of Warfarin Sodium in *Diluent*

System suitability solution: 2.4 µg/mL of [USP Warfarin Related Compound A RS](#) and 0.8 mg/mL of Warfarin Sodium in *Diluent* prepared as follows. Transfer 0.5 mL of *Standard stock solution* to a 25-mL volumetric flask and dilute with *Sample solution* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 260 nm

Column: 4.6-mm × 25-cm; packing [L10](#)

Column temperature: 35°

Flow rate: 1.5 mL/min

Injection volume: 50 µL

Run time: NLT 2 times the retention time of the warfarin peak

System suitability

Samples: Standard solution and System suitability solution

Suitability requirements**Resolution:** NLT 3 between warfarin and warfarin related compound A peaks, *System suitability solution***Relative standard deviation:** NMT 5.0% for the warfarin and warfarin related compound A peaks, *Standard solution***Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of Alice's ketone (sodium salt of warfarin related compound A) in the portion of Warfarin Sodium taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak response of warfarin related compound A from the *Sample solution* r_S = peak response of warfarin related compound A from the *Standard solution* C_S = concentration of [USP Warfarin Related Compound A RS](#) in the *Standard solution* (mg/mL) C_U = concentration of Warfarin Sodium in the *Sample solution* (mg/mL) M_{r1} = molecular weight of Alice's ketone, 286.30 M_{r2} = molecular weight of warfarin related compound A, 264.32

Calculate the percentage of any other individual impurity in the portion of Warfarin Sodium taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

 r_U = peak response of any other individual impurity from the *Sample solution* r_S = peak response of warfarin from the *Standard solution* C_S = concentration of [USP Warfarin RS](#) in the *Standard solution* (mg/mL) C_U = concentration of Warfarin Sodium in the *Sample solution* (mg/mL) M_{r1} = molecular weight of warfarin sodium, 330.31 M_{r2} = molecular weight of warfarin, 308.33 F = relative response factor for each individual impurity (see [Table 1](#))**Acceptance criteria:** See [Table 1](#). Disregard any impurity peak less than 0.06%.**Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
4-Hydroxycoumarin ^a	0.4	2.0	0.3
Benzalacetone ^b	0.6	2.0	0.3
Warfarin	1.0	—	—
Alice's ketone ^c	1.2	1.0	0.3
Any individual unspecified impurity	—	1.0	0.10
Total impurities	—	—	1.0

^a 4-Hydroxy-2H-chromen-2-one.

^b (E)-4-Phenylbut-3-en-2-one.^c Sodium salt of warfarin related compound A; 3-(o-Hydroxyphenyl)-5-phenyl-2-cyclohexen-1-one sodium salt.**SPECIFIC TESTS****• ISOPROPYL ALCOHOL CONTENT (CRYSTALLINE CLATHRATE FORM)****Internal standard solution:** 4.25 mg/mL of *n*-propyl alcohol in water**Standard stock solution:** 4.25 mg/mL of isopropyl alcohol in water**Standard solution:** Transfer 2.0 mL of the Standard stock solution and 2.0 mL of the Internal standard solution to a headspace vial, seal, and mix.**Sample solution:** Transfer 100 mg of Warfarin Sodium, 2.0 mL of water, and 2.0 mL of the Internal standard solution to a headspace vial, seal, and mix.**Blank solution:** Transfer 2.0 mL of water and 2.0 mL of the Internal standard solution to a headspace vial, seal, and mix.**Chromatographic system**(See *Chromatography (621), System Suitability*.)**Mode:** GC**Detector:** Flame ionization**Column:** 0.32-mm × 30-m; 1.8-μm coating of phase G43**Temperatures****Injector:** 140°**Detector:** 240°**Column:** See *Table 2*.**Table 2**

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
40	0	40	20
40	10	240	10

Carrier gas: Nitrogen**Flow rate:** 1 mL/min**Injector type:** Headspace; split ratio, 80:1**Temperatures****Equilibration:** 65°**Needle:** 75°**Transfer line:** 85°**Headspace carrier pressure:** 15 psi**Times****Equilibration:** 20 min**Pressurization:** 3.0 min**Loop fill:** 0.2 min**Injection:** 0.1 min**System suitability****Sample:** Standard solution[NOTE—The relative retention times for isopropyl alcohol and *n*-propyl alcohol are about 0.66 and 1.0, respectively.]**Suitability requirements****Resolution:** NLT 5.0 between isopropyl alcohol and *n*-propyl alcohol**Tailing factor:** NMT 1.3 for the isopropyl alcohol peak**Relative standard deviation:** NMT 2.0%, peak response ratio of isopropyl alcohol to *n*-propyl alcohol**Analysis****Samples:** Standard solution, Sample solution, and Blank solution

Calculate the percentage of isopropyl alcohol in the portion of Warfarin Sodium taken:

$$\text{Result} = (R_u/R_s) \times (C_s/C_u) \times 100$$

R_U = peak response ratio of isopropyl alcohol to *n*-propyl alcohol from the *Sample solution*

R_S = peak response ratio of isopropyl alcohol to *n*-propyl alcohol from the *Standard solution*

C_S = concentration of isopropyl alcohol in the *Standard solution* (mg/mL)

C_U = concentration of Warfarin Sodium in the *Sample solution* (mg/mL)

Acceptance criteria: 8.0%–8.5%

• **pH (791)**

Sample solution: 10 mg/mL

Acceptance criteria: 7.2–8.3

• **WATER DETERMINATION (921), Method I:** NMT 4.5% for the amorphous form; NMT 0.3% for the crystalline clathrate form

• **ABSORBANCE IN ALKALINE SOLUTION**

Sample solution: 125 mg/mL in [sodium hydroxide](#) solution (1 in 20). Pass through a membrane filter.

Blank: [Sodium hydroxide](#) solution (1 in 20)

Analysis: Determine the absorbance of the solution in a 1-cm cell at 385 nm, with a suitable spectrometer, within 15 min.

Acceptance criteria: NMT 0.1

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed, light-resistant containers.

• **LABELING:** Label it to indicate whether it is the amorphous or the crystalline form.

• **USP REFERENCE STANDARDS (11)**

[USP Warfarin RS](#)

[USP Warfarin Related Compound A RS](#)

3-(*o*-Hydroxyphenyl)-5-phenyl-2-cyclohexen-1-one.

$C_{18}H_{16}O_2$ 264.32

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
WARFARIN SODIUM	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(6)

Current DocID: [GUID-18157354-8352-4D39-9521-C4936DF0ADBE_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M88770_04_01

DOI ref: [3vp9r](#)