

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2023
Document Type: USP Monographs
DocId: GUID-3F4D9759-7E33-4648-BC85-3D3C37900165_5_en-US
DOI: https://doi.org/10.31003/USPNF_M5264_05_01
DOI Ref: qos1q

© 2025 USPC
Do not distribute

Vigabatrin Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-vigabatrin-tabs-20230428.

DEFINITION

Vigabatrin Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of vigabatrin ($C_6H_{11}NO_2$).

IDENTIFICATION

• A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197K

Sample: Grind an appropriate number of Tablets to prepare a 50-mg/mL solution of vigabatrin in [water](#). Pass a portion of the solution through a suitable filter, and prepare a 2-mg/mL solution by mixing a suitable portion of the filtrate with [acetone](#). Evaporate the solution to dryness in a stream of nitrogen. Prepare a potassium bromide pellet using a suitable amount of the residue. Alternatively, the *Sample* may be prepared by directly mixing an amount of finely ground Tablets (NLT 2) equivalent to about of 3 mg of vigabatrin with about 200 mg of [potassium bromide](#).

Acceptance criteria: The IR spectrum of the *Sample* is consistent with a similarly prepared pellet of [USP Vigabatrin RS](#).

• B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 3.4 g/L of [potassium phosphate, monobasic](#) in [water](#)

Mobile phase: [Acetonitrile](#), [methanol](#), and *Buffer* (4:40:1000). Adjust with [phosphoric acid](#) to a pH of 2.8.

System suitability solution: 1.0 mg/mL of [USP Vigabatrin RS](#) and 12 μ g/mL of [USP Vigabatrin Related Compound A RS](#) in *Mobile phase*

Standard solution: 1.0 mg/mL of [USP Vigabatrin RS](#) in *Mobile phase*

Sample stock solution: Nominally 5.0 mg/mL of vigabatrin from Tablets (NLT 10) prepared as follows. Transfer a suitable number of Tablets to a suitable volumetric flask. Add *Mobile phase* to about 80% of the flask volume, and stir for 1 h to give a uniform dispersion of fine particulate. Dilute with *Mobile phase* to volume, and pass a portion of the solution through a suitable filter of 0.45- μ m pore size.

Sample solution: Nominally 1.0 mg/mL of vigabatrin from the *Sample stock solution* and *Mobile phase*. Pass a portion of the solution through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; 10- μ m packing [L9](#)

Flow rate: 1.5 mL/min

Injection volume: 50 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times for vigabatrin related compound A and vigabatrin are about 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.5 between vigabatrin related compound A and vigabatrin, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 1.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of vigabatrin from the *Sample solution*

r_S = peak response of vigabatrin from the *Standard solution*

C_S = concentration of [USP Vigabatrin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of vigabatrin in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#).

Test 1

Medium: [Water](#); 900 mL

Apparatus 2: 50 rpm

Time: 30 min

Mobile phase: Dissolve 6 g of [sodium phosphate, monobasic](#) in 800 mL of [water](#). Add 100 mL of [acetonitrile](#), and dilute with [water](#) to 1 L. Adjust with [phosphoric acid](#) to a pH of 2.3.

System suitability solution: 0.6 mg/mL of [USP Vigabatrin RS](#) and 6 μ g/mL of [USP Vigabatrin Related Compound A RS](#) in *Mobile phase*

Standard solution: (L/900) mg/mL of [USP Vigabatrin RS](#) in [water](#)

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; 10- μ m packing [L9](#)

Flow rate: 1.0 mL/min

Injection volume: 50 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The relative retention times for vigabatrin related compound A and vigabatrin are about 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between vigabatrin related compound A and vigabatrin, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage (Q) of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) dissolved:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times V \times 100$$

r_U = peak response of vigabatrin from the *Sample solution*

r_S = peak response of vigabatrin from the *Standard solution*

C_S = concentration of [USP Vigabatrin RS](#) in the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

V = volume of *Medium*

Tolerances: NLT 75% (Q) of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) is dissolved in 30 min.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 2: 75 rpm

Time: 30 min

Mobile phase: Dissolve 6.9 g of [sodium phosphate, monobasic](#) in 800 mL of [water](#). Add 100 mL of [acetonitrile](#), and dilute with [water](#) to 1 L. Adjust with diluted [phosphoric acid](#) to a pH of 2.3.

System suitability solution: 0.6 mg/mL of [USP Vigabatrin RS](#) and 6 µg/mL of [USP Vigabatrin Related Compound A RS](#) in *Mobile phase*.

Sonicate to dissolve if necessary.

Standard solution: (L/900) mg/mL of [USP Vigabatrin RS](#) in *Medium*, where *L* is the label claim, in mg/Tablet. Sonicate to dissolve.

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding the first 4 mL of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 10-µm packing [L9](#)

Flow rate: 1 mL/min

Injection volume: 50 µL

Run time: NLT 1.7 times the retention time of vigabatrin

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The relative retention times for vigabatrin related compound A and vigabatrin are about 0.8 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between vigabatrin related compound A and vigabatrin, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

r_U = peak response of vigabatrin from the *Sample solution*

r_S = peak response of vigabatrin from the *Standard solution*

C_S = concentration of [USP Vigabatrin RS](#) in the *Standard solution* (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) is dissolved.

▲ **Test 3:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.

Medium: 0.1 N [hydrochloric acid](#); 900 mL

Apparatus 2: 50 rpm

Time: 30 min

Buffer: Dissolve 6.0 g of [sodium phosphate, monobasic, anhydrous](#) in 800 mL of [water](#).

Mobile phase: [Acetonitrile](#), *Buffer*, and [water](#) (10:80:10). Adjust with [phosphoric acid](#) to a pH of 2.3.

System suitability solution: 0.6 mg/mL of [USP Vigabatrin RS](#) and 6 µg/mL of [USP Vigabatrin Related Compound A RS](#) in *Mobile phase*

Standard solution: (L/900) mg/mL of [USP Vigabatrin RS](#) in *Medium*, where *L* is the label claim, in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45-µm pore size, discarding the first NLT 2 mL of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Columns

Guard: 1.0-mm × 1-cm; 5-µm packing [L3](#)

Analytical: 4.6-mm × 25-cm; 10-µm packing [L9](#)

Flow rate: 1 mL/min

Injection volume: 50 μ L

Run time: NLT 1.6 times the retention time of vigabatrin

System suitability

Samples: System suitability solution and Standard solution

[**NOTE**—The relative retention times for vigabatrin related compound A and vigabatrin are about 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between vigabatrin related compound A and vigabatrin, System suitability solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) dissolved:

$$\text{Result} = (r_U/r_S) \times C_S \times V \times (1/L) \times 100$$

r_U = peak response of vigabatrin from the Sample solution

r_S = peak response of vigabatrin from the Standard solution

C_S = concentration of [USP Vigabatrin RS](#) in the Standard solution (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

Tolerances: NLT 80% (Q) of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) is dissolved. ▲ (RB 1-May-2023)

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Buffer: 1.5 g/L of [ammonium acetate](#) in [water](#)

Mobile phase: [Acetonitrile](#) and [Buffer](#) (5:95)

System suitability solution: 0.1 mg/mL each of [USP Vigabatrin RS](#), [USP Vigabatrin Related Compound A RS](#), [USP Vigabatrin Related Compound B RS](#), and [USP Povidone RS](#) in [Mobile phase](#)

Sensitivity solution: 0.01 mg/mL of [USP Vigabatrin Related Compound A RS](#) in [Mobile phase](#)

Standard solution: 0.07 mg/mL of [USP Vigabatrin Related Compound A RS](#) in [Mobile phase](#)

Sample solution: Nominally 22 mg/mL of vigabatrin prepared as follows. Transfer a suitable amount of finely powdered Tablets (NLT 10) to a suitable volumetric flask. Add [Mobile phase](#) to 80% of the flask volume. Sonication may be used to aid in dissolution. Allow the resulting solution to cool to room temperature, and dilute with [Mobile phase](#) to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Flow rate: 1.0 mL/min

Injection volume: 10 μ L

Run time: 12 times the retention time of the vigabatrin peak

System suitability

Samples: System suitability solution, Sensitivity solution, and Standard solution

[**NOTE**—See [Table 1](#) for the relative retention times.]

Suitability requirements

Resolution: NLT 2.0 between vigabatrin related compound B and povidone, System suitability solution

Relative standard deviation: NMT 5.0%, Standard solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of vigabatrin related compound A from the *Standard solution*

C_S = concentration of [▲USP Vigabatrin Related Compound A RS](#)▲ (ERR 1-May-2023) in the *Standard solution*

C_U = nominal concentration of vigabatrin in the *Sample solution*

F = relative response factor (see [Table 1](#))

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor ^a	Acceptance Criteria, NMT (%)
Vigabatrin	0.12	—	—
Vigabatrin related compound B ^b	0.13	—	—
Povidone ^c	0.25	—	—
N-Carboxymethyl vinylpyrrolidinone ^d	0.38	2.1	0.15
Vigabatrin related compound A	1.0	1.0	0.3
N-3-Oxocarboxypentyl vinylpyrrolidinone ^e	1.28	1.0	0.15
Any individual unspecified degradation product	—	0.026	0.15
Total impurities	—	—	1.0

^a RRF relative to vigabatrin related compound A.

^b Included for peak identification only. Not to be included in *Total impurities* as it is controlled in the drug substance.

^c Povidone is due to excipient. Included for identification only. Not to be included in *Total impurities*.

^d 2-(2-Oxo-5-vinylpyrrolidin-1-yl)acetic acid.

^e 4-Oxo-6-(2-oxo-5-vinylpyrrolidin-1-yl) hexanoic acid.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- [USP Reference Standards \(11\)](#).

[USP Povidone RS](#)

[USP Vigabatrin RS](#)

[USP Vigabatrin Related Compound A RS](#)

5-Vinylpyrrolidin-2-one.

C6H9NO 111.14

[USP Vigabatrin Related Compound B RS](#)

(E)-2-(2-Aminoethyl)but-2-enoic acid hydrochloride.

C6H11NO2.HCl 165.62

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
VIGABATRIN TABLETS	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 40(1)

Current DocID: [GUID-3F4D9759-7E33-4648-BC85-3D3C37900165_5_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M5264_05_01

DOI ref: [qos1q](#)

OFFICIAL