

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-B2022D03-3E5C-40FB-B200-58FA250D8BE1_2_en-US
DOI: https://doi.org/10.31003/USPNF_M5272_02_01
DOI Ref: kxm6h

© 2025 USPC
Do not distribute

Vigabatrin for Oral Solution

DEFINITION

Vigabatrin for Oral Solution contains NLT 95.0% and NMT 105.0% of the labeled amount of vigabatrin ($C_6H_{11}NO_2$).

IDENTIFICATION

Change to read:

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K** ▲ (CN 1-May-2020)

Sample: Combine an appropriate number of Vigabatrin for Oral Solution packets to prepare a 50 mg/mL solution of vigabatrin in water. Pass a portion through a suitable filter, and prepare a 2-mg/mL solution by mixing a suitable portion of the filtrate with acetone. Evaporate the solution to dryness in a stream of nitrogen. Prepare a potassium bromide (KBr) pellet using a suitable amount of the residue.

Alternatively, the *Sample* may be prepared by directly mixing an amount of the contents of NLT 2 packets of Vigabatrin for Oral Solution equivalent to about 3 mg of vigabatrin with about 200 mg of potassium bromide.

Acceptance criteria: The spectrum of the *Sample* corresponds to that of the spectrum of [USP Vigabatrin RS](#) prepared in a similar manner.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 3.4 g/L of monobasic potassium phosphate in water

Mobile phase: Acetonitrile, methanol, and *Buffer* (4:40:1000). Adjust with phosphoric acid to a pH of 2.8.

System suitability solution: 2 mg/mL of [USP Vigabatrin RS](#) and 12 µg/mL of [USP Vigabatrin Related Compound A RS](#) in *Mobile phase*

Standard solution: 2.0 mg/mL of [USP Vigabatrin RS](#) in *Mobile phase*

Sample solution: Nominally 2.0 mg/mL of vigabatrin from the contents of NLT 10 Vigabatrin for Oral Solution packets prepared as follows.

Combine the contents from the packets, and transfer a suitable amount of the powder equivalent to NLT 200 mg of vigabatrin to a suitable volumetric flask. Dilute with *Mobile phase* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 10-µm packing L9

Flow rate: 1.5 mL/min

Injection volume: 20 µL

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The relative retention times for vigabatrin related compound A and vigabatrin are about 0.7 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.5 between vigabatrin related compound A and vigabatrin peaks, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 1.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of vigabatrin ($C_6H_{11}NO_2$) in the portion of Vigabatrin for Oral Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of vigabatrin from the *Sample solution*

r_s = peak response of vigabatrin from the *Standard solution*

C_s = concentration of [USP Vigabatrin RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of vigabatrin in the *Sample solution* (mg/mL)

Acceptance criteria: 95.0%–105.0%

PERFORMANCE TESTS

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meets the requirements

IMPURITIES

- **ORGANIC IMPURITIES**

Buffer: 1.5 g/L of ammonium acetate in water

Mobile phase: Acetonitrile and *Buffer* (5:95)

System suitability solution: 0.1 mg/mL each of [USP Vigabatrin RS](#), [USP Vigabatrin Related Compound A RS](#), [USP Vigabatrin Related Compound B RS](#), and [USP Povidone RS](#) in *Mobile phase*

Sensitivity solution: 0.01 mg/mL of [USP Vigabatrin Related Compound A RS](#) in *Mobile phase*

Standard solution: 0.07 mg/mL of [USP Vigabatrin Related Compound A RS](#) in *Mobile phase*

Sample solution: Nominally 22 mg/mL of vigabatrin prepared as follows. Transfer a suitable amount of powder from the combined contents of NLT 10 Vigabatrin for Oral Solution packets, equivalent to NLT 220 mg of vigabatrin, to a suitable volumetric flask. Add *Mobile phase* to 80% of the volume of the flask. Sonication may be used to aid in dissolution. Allow the resulting solution to cool to room temperature. Dilute with *Mobile phase* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 1.0 mL/min

Injection volume: 10 μL

Run time: 12 times the retention time of the vigabatrin peak

System suitability

Samples: *System suitability solution*, *Sensitivity solution*, and *Standard solution*

[NOTE—See [Table 1](#) for the relative retention times.]

Suitability requirements

Resolution: NLT 2.0 between vigabatrin related compound B and povidone, *System suitability solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Vigabatrin for Oral Soution taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response of each impurity from the *Sample solution*

r_s = peak response of vigabatrin related compound A from the *Standard solution*

C_s = concentration of [USP Vigabatrin Related Compound A](#) in the *Standard solution*

C_u = nominal concentration of vigabatrin in the *Sample solution*

F = relative response factor (see [Table 1](#))

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor ^a	Acceptance Criteria, NMT (%)
Vigabatrin	0.12	—	—
Vigabatrin related compound B ^b	0.13	—	—
Povidone ^c	0.25	—	—
Vigabatrin related compound A	1.0	1.0	0.15
Any individual unspecified degradation product	—	0.026	0.15
Total impurities	—	—	0.5

^a RRF relative to vigabatrin related compound A.^b Included for peak identification only. Not to be included in *Total impurities*.^c Povidone is due to excipient. Included for identification only. Not to be included in *Total impurities*.**ADDITIONAL REQUIREMENTS**

- PACKAGING AND STORAGE:** Preserve in tight containers. Store at controlled room temperature.

USP REFERENCE STANDARDS (11)[USP Povidone RS](#)[USP Vigabatrin RS](#)[USP Vigabatrin Related Compound A RS](#)

5-Vinylpyrrolidin-2-one.

C6H9NO 111.14[USP Vigabatrin Related Compound B RS](#)

(E)-2-(2-Aminoethyl)but-2-enoic acid hydrochloride.

C6H11NO2.HCl 165.62**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
VIGABATRIN FOR ORAL SOLUTION	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 40(1)

Current DocID: GUID-B2022D03-3E5C-40FB-B200-58FA250D8BE1_2_en-US**DOI:** https://doi.org/10.31003/USPNF_M5272_02_01**DOI ref:** [kxm6h](#)