

Status: Currently Official on 17-Feb-2025
 Official Date: Official Prior to 2013
 Document Type: USP Monographs
 DocId: GUID-F2EB0824-5ED6-4579-9041-748B4090A0B3_1_en-US
 DOI: https://doi.org/10.31003/USPNF_M87935_01_01
 DOI Ref: ka9pj

© 2025 USPC
 Do not distribute

Vasopressin

* in pig vasopressin, R is K

$C_{46}H_{65}N_{15}O_{12}S_2$ 1084.24

Vasopressin, 8-L-arginine CAS RN®: 113-79-1; UNII: Y490706MFD.

DEFINITION

Vasopressin is a polypeptide hormone having the properties of causing the contraction of vascular and other smooth muscles, and of antidiuresis. It is prepared by chemical synthesis. It contains NLT 95.0% and NMT 105.0% of vasopressin ($C_{46}H_{65}N_{15}O_{12}S_2$), calculated on the anhydrous, acetic acid-free basis.

IDENTIFICATION

- **A.** The retention time of the vasopressin peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B. MASS SPECTRAL ANALYSIS**

Infusion solution: Acetonitrile, water, and trifluoroacetic acid (80:20:0.08)

Standard solution: 1 mg/mL of [USP Vasopressin RS](#) in water

Sample solution: 1 mg/mL of Vasopressin in water.

[*NOTE*—The final concentrations of the *Standard solution* and the *Sample solution* can be adjusted, depending on the sensitivity of the mass spectrometer used in the testing.]

Instrumental conditions

(See [Mass Spectrometry \(736\)](#).)

Mode: LC/MS spectrometer

Interface/detection: Infusion system connected to an electrospray interface (positive ion)

Flow rate: 0.3 mL/min

Injection size: 10 μ L

Analysis

Samples: *Standard solution* and *Sample solution*

Acceptance criteria: Should contain peaks with mass-to-charge ratios of 1084 and 543

ASSAY

• PROCEDURE

Mobile phase: Dissolve 6.6 g of dibasic ammonium phosphate in 950 mL of water. Adjust with concentrated phosphoric acid to a pH of 3.0. Dilute with water to 1000 mL. To 870 mL of this solution add 130 mL of acetonitrile, and mix. Filter under vacuum through a nylon membrane of 0.45- μ m pore size. [*NOTE*—The retention time of the vasopressin peak is very sensitive to small changes in acetonitrile concentration in the *Mobile phase*.]

System suitability solution: Dissolve suitable quantities of [USP Lypressin RS](#) and [USP Vasopressin RS](#) in 0.25% glacial acetic acid to obtain a solution having a known concentration of about 25 μ g/mL of each substance.

Standard solution: Dissolve the entire contents of a vial of [USP Vasopressin RS](#) in a known volume of 0.25% glacial acetic acid. [*NOTE*—The solution may be diluted as necessary to a working concentration range for the Assay.]

Sample solution: Transfer about 10 mg of Vasopressin to a 25-mL volumetric flask. Dissolve in 0.25% glacial acetic acid, and dilute with the same solvent to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; packing L1**Column temperature:** 40 ± 1°**Flow rate:** 1.0 mL/min**Injection size:** 20 µL. [NOTE—The column is allowed to equilibrate for 1 h before making the first injection.]**System suitability****Samples:** *System suitability solution* and *Standard solution*. [NOTE—Inject into an equilibrated liquid chromatograph, allowing about 60 min for complete elution.]

[NOTE—The retention time of the vasopressin peak is between 6 and 9 min.]

Suitability requirements**Resolution:** NLT 1.1 between the vasopressin and lypressin peaks**Relative standard deviation:** NMT 2.0% for the vasopressin peak**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of vasopressin ($C_{46}H_{65}N_{15}O_{12}S_2$) in the portion of Vasopressin taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response from the *Sample solution* r_S = peak response from the *Standard solution* C_S = concentration of [USP Vasopressin RS](#) in the *Standard solution* (mg/mL) C_U = concentration of Vasopressin in the *Sample solution* (mg/mL)**Acceptance criteria:** 95.0%–105.0% on the anhydrous, acetic acid-free basis**IMPURITIES**

- **ORDINARY IMPURITIES:** The sum of the responses of impurities from the *Sample solution* in the Assay is NMT 5% of the area of the vasopressin peak.

SPECIFIC TESTS

- [MICROBIAL ENUMERATION TESTS \(61\)](#) and [TESTS FOR SPECIFIED MICROORGANISMS \(62\)](#): The total bacterial count is NMT 2×10^2 cfu/g. For products of animal origin, it also meets the requirements of the tests for absence of *Salmonella* species and *Escherichia coli*.
- [WATER DETERMINATION, Method Ic \(921\)](#): NMT 8.0%
- [ACETIC ACID IN PEPTIDES \(503\)](#): NMT 15.0%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, preferably of Type I glass, and store in a refrigerator.

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Lypressin RS](#)[USP Vasopressin RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
VASOPRESSIN	Jennifer Tong Sun Senior Scientist II	BIO12020 Biologics Monographs 1 - Peptides
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	BIO12020 Biologics Monographs 1 - Peptides

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 34(4)

Current DocID: [GUID-F2EB0824-5ED6-4579-9041-748B4090A0B3_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M87935_01_01

DOI ref: [ka9pj](#)

OFFICIAL