

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-531FE7F8-324F-4085-AB0F-0B787133901D_4_en-US
DOI: https://doi.org/10.31003/USPNF_M87750_04_01
DOI Ref: I07bw

© 2025 USPC
Do not distribute

Vancomycin

$C_{66}H_{75}Cl_2N_9O_{24}$ 1449.25

Vancomycin

(S_d)-(3S,6R,7R,22R,23S,26S,36R,38aR)-44-[[2-O-(3-Amino-2,3,6-trideoxy-3-C-methyl- α -L-lyxo-hexopyranosyl)- β -D-glucopyranosyl]oxy]-3-(carbamoylmethyl)-10,19-dichloro-2,3,4,5,6,7,23,24,25,26,36,37,38,38a-tetradecahydro-7,22,28,30,32-pentahydroxy-6-[(2R)-4-methyl-2-(methylamino)valeramido]-2,5,24,38,39-pentaoxo-22H-8,11:18,21-dietheno-23,36-(iminomethano)-13,16:31,35-dimetheno-1H,16H-[1,6,9]oxadiazacyclohexadecino[4,5-m][10,2,16]-benzoxadiazacyclotetrasine-26-carboxylic acid; [3S-[3R*,6S*(S*),7S*,22S*,23R*,26R*,36S*,38aS*]]-3-(2-Amino-2-oxoethyl)-44-[[2-O-(3-amino-2,3,6-trideoxy-3-C-methyl- α -L-lyxo-hexopyranosyl)- β -D-glucopyranosyl]oxy]-10,19-dichloro-2,3,4,5,6,7,23,24,25,26,36,37,38,38a-tetra-decahydro-7,22,28,30,32-pentahydroxy-6-[(4-methyl-2-(methylamino)-1-oxopentyl)amino]-2,5,24,38,39-pentaoxo-22H-8,11:18,21-dietheno-23,36-(iminomethano)-13,16:31,35-dimetheno-1H,16H-[1,6,9]oxadiazacyclohexadecino[4,5-m][10,2,16]-benzoxadiazacyclotetraine-26-carboxylic acid CAS RN®: 1404-90-6; UNII: 6Q205EH1VU.

DEFINITION

Vancomycin has a potency equivalent to NLT 950 μ g/mg of $C_{66}H_{75}Cl_2N_9O_{24}$, calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy, 197K](#) ▲ (CN 1-May-2020)
- B. [IDENTIFICATION TESTS—GENERAL, Chloride\(191\)](#): It does not meet the requirements of the test.

ASSAY

- [ANTIBIOTICS—MICROBIAL ASSAYS \(81\)](#).

Sample solution: Transfer 100 mg of Vancomycin to a 100-mL volumetric flask. Add 50 mL of water and 1 mL of 0.1 N hydrochloric acid, and swirl to dissolve, using sonication if necessary. Dilute with water to volume. Dilute a volume of this solution with *Buffer B.4* to yield a *Test Dilution* having a concentration assumed to be equal to that of the median dose of the standard.

Analysis: Proceed as directed for Vancomycin in the chapter.

Acceptance criteria: NLT 950 μ g/mg of vancomycin on the anhydrous basis

SPECIFIC TESTS

- [COMPOSITION OF VANCOMYCIN](#)

Buffer: Triethylamine and water (1:500). Adjust with phosphoric acid to a pH of 3.2.

Solution A: Acetonitrile, tetrahydrofuran, and *Buffer* (7:1:92)

Solution B: Acetonitrile, tetrahydrofuran, and *Buffer* (29:1:70)

Mobile phase: See [Table 1](#). Make adjustments if necessary, changing the acetonitrile proportion in *Solution A* to obtain a retention time of 7.5–10.5 min for the main vancomycin peak.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
12	100	0
20	0	100

Time (min)	Solution A (%)	Solution B (%)
22	0	100
23	100	0
30	100	0

System suitability solution: 0.5 mg/mL of [USP Vancomycin Hydrochloride RS](#) in water. Heat at 65° for 48 h, and allow to cool.

Sample stock solution: Transfer 250 mg of Vancomycin to a 25-mL volumetric flask. Add 5 mL of *Solution A*, then add 0.1 N hydrochloric acid dropwise with swirling until dissolution is achieved. Dilute with *Solution A* to volume.

Sample solution: Dilute 2.0 mL of the *Sample stock solution* to 50 mL with *Solution A*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 280 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 2 mL/min

Injection size: 20 μL

System suitability

Sample: *System suitability solution*

[NOTE—The elution order is compound 1, vancomycin B, and compound 2. Compound 2 elutes 3–6 min after the start of the period when the percentage of *Solution B* is increasing from 0% to 100%.]

Suitability requirements

Resolution: NLT 3.0 between compound 1 and vancomycin B

Column efficiency: NLT 1500 theoretical plates for the vancomycin B peak

Analysis

Samples: *Sample stock solution* and *Sample solution*

Where baseline separation is not achieved, peak areas are defined by vertical lines extended from the valleys between peaks to the baseline. The main component peak may include a fronting shoulder, which is attributed to monodechlorovancomycin. This shoulder should not be integrated separately.

Correct any peak observed in the chromatograms obtained from the *Sample stock solution* and *Sample solution* by subtracting the area response of any peak observed in the chromatogram of *Solution A* at the corresponding retention time.

Calculate the percentage of vancomycin B in the portion of Vancomycin taken:

$$\text{Result} = \{(D \times r_B) / [(D \times r_B) + r_A]\} \times 100$$

D = dilution factor, *Sample stock solution* to *Sample solution*, 25

r_B = corrected peak area response of the main peak from the *Sample solution*

r_A = sum of the corrected peak area responses of all the peaks, other than the main peak, from the *Sample stock solution*

Calculate the percentage of any individual peak, other than the main peak, in the portion of Vancomycin taken:

$$\text{Result} = \{r_i / [(D \times r_B) + r_A]\} \times 100$$

r_i = corrected peak area response of any individual peak, other than the main peak, from the *Sample stock solution*

D = dilution factor, *Sample stock solution* to *Sample solution*, 25

r_B = corrected peak area response of the main peak from the *Sample solution*

r_A = sum of the corrected peak area responses of all the peaks, other than the main peak, from the *Sample stock solution*

Acceptance criteria: NLT 92% of vancomycin B; NMT 3% of any individual peak other than the main peak

- [WATER DETERMINATION, Method I\(921\)](#): NMT 20%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.
- **USP REFERENCE STANDARDS (11):**
[USP Vancomycin Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
VANCOMYCIN	Ying Han Associate Science & Standards Liaison	BIO42020 Biologics Monographs 4 - Antibiotics
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	BIO42020 Biologics Monographs 4 - Antibiotics

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(5)

Current DocID: GUID-531FE7F8-324F-4085-AB0F-0B787133901D_4_en-US

DOI: https://doi.org/10.31003/USPNF_M87750_04_01

DOI ref: I07bw

OFFICIAL