

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-A96ADA60-D436-4C33-BC5F-8217B8717A4E_2_en-US
 DOI: https://doi.org/10.31003/USPNF_M87030_02_01
 DOI Ref: okw2i

© 2025 USPC
 Do not distribute

Tyloxapol

Phenol, 4-(1,1,3,3-tetramethylbutyl)-, polymer with formaldehyde and oxirane;
 p-(1,1,3,3-Tetramethylbutyl)phenol polymer with ethylene oxide and formaldehyde

CAS RN®: 25301-02-4.

DEFINITION

Tyloxapol is a nonionic liquid polymer of the alkyl aryl polyether alcohol type. [NOTE—Precautions should be exercised to prevent contact of Tyloxapol with metals.]

IDENTIFICATION

Change to read:

- A. ▲ [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197F](#) ▲ (CN 1-MAY-2020)

Analysis: On the undried specimen

Acceptance criteria: Meets the requirements

IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 1.0%

- **LIMIT OF ANIONIC DETERGENTS**

Standard solution: Transfer 50 mL of water and 1 mL of a solution of sodium lauryl sulfate containing 150 µg/mL to a 125-mL separator.

Sample solution: Mix 20 mL of a solution containing 10 mg/mL of Tyloxapol with 30 mL of water in a 125-mL separator.

Analysis: To both separators add 2 drops of 3 N hydrochloric acid, 1 drop of methylene blue solution (1 in 25), and 25 mL of chloroform.

Shake both separators gently for 2 min, allow to stand for 10 min, and transfer the chloroform layers to individual separators. Wash the chloroform extracts with separate 25-mL portions of water, transfer the chloroform solutions to matched 50-mL color-comparison tubes, and view downward over a white surface.

Acceptance criteria: The chloroform solution from the *Sample solution* is not darker than that from the *Standard solution*, corresponding to NMT 0.075% of anionic detergents (as sodium lauryl sulfate).

- **LIMIT OF ETHYLENE OXIDE**

Standard solution

[**CAUTION**—Ethylene oxide is toxic and flammable. Prepare in a well-ventilated hood, using great care.]

Transfer 25 mL of dimethylformamide to a 50-mL volumetric flask and weigh. Add 0.5 mL of ethylene oxide. Reweigh to obtain the weight of ethylene oxide by difference. Dilute with dimethylformamide to volume. Dilute a portion of this solution with dimethylformamide to obtain a solution having a concentration of 10 µg/g of ethylene oxide.

Sample solution: Transfer 1 g of Tyloxapol into a glass- stoppered, 5-mL graduated cylinder. Dilute with dimethylformamide to 2.0 mL.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)**Mode:** GC**Detector:** Flame ionization**Column:** 1.8-m \times 2-mm glass column containing 5% phase G16 on support S12**Temperatures****Injection port:** 200°**Detector:** 250°**Column:** See [Table 1](#).**Table 1**

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold at Final Temperature (min)
50	0	50	3
50	25	200	5

Carrier gas: Helium**Flow rate:** 25 mL/min**Injection volume:** 3 μ L**System suitability****Sample:** Standard solution**Suitability requirements****Relative standard deviation:** NMT 10%**Analysis****Samples:** Standard solution and Sample solution

Calculate the quantity of ethylene oxide in the portion of Tyloxapol taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U)$$

r_U = peak response of ethylene oxide from the Sample solution

r_S = peak response of ethylene oxide from the Standard solution

C_S = concentration of ethylene oxide in the Standard solution (μ g/mL)

C_U = concentration of Tyloxapol taken in the Sample solution (g/mL)

Acceptance criteria: NMT 10 μ g/g**• LIMIT OF FORMALDEHYDE****Diluent:** Isopropyl alcohol and water (4 in 10)**Standard solution:** Transfer 750 μ L of a solution containing 27 μ g/mL of formaldehyde to a 25-mL volumetric flask containing 5 mL of Diluent.**Sample solution:** Prepare a solution containing 200 mg/mL of Tyloxapol in Diluent. Transfer 500 μ L of this solution to a 25-mL volumetric flask containing 5 mL of Diluent.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** Vis**Analytical wavelength:** 520 nm**Cell:** 1 cm**Analysis****Samples:** Standard solution, Sample solution, and blank

To the Standard solution, the Sample solution, and a blank (prepared by placing 5 mL of Diluent in a 25-mL volumetric flask) add 500 μ L of phenylhydrazine hydrochloride solution (7.5 in 100). Mix, and allow to stand for 10 \pm 1 min. Add 300 μ L of potassium ferricyanide solution (50 mg/mL) to each flask, mix, and allow to stand for 5 min \pm 30 s. Then add 2.0 mL of 2.5 N sodium hydroxide to each. Mix, and allow to stand for 4 \pm 1 min. Dilute each flask with Diluent to volume, mix, and read the absorbances after 10 \pm 3 min.

Acceptance criteria: NMT 0.0075%; the absorbance of the *Sample solution* does not exceed that of the *Standard solution*.

- **FREE PHENOL**

Sample solution: 10 mg/mL

Analysis: To 10 mL of *Sample solution* add 1 mL of bromine TS, and mix.

Acceptance criteria: No cloudiness or precipitation is observed immediately.

- **ABSENCE OF CATIONIC DETERGENTS**

Sample solution: 10 mg/mL

Analysis: Place 10 mL of the *Sample solution* in a glass-stoppered, 50-mL graduated cylinder, and make distinctly alkaline to litmus with sodium carbonate TS (about 1 mL). Add 4 mL of aqueous bromophenol blue solution (0.4 mg/mL), mix, and add 10 mL of a 1-in-10 solvent mixture of ethylene dichloride in toluene. Shake gently, and allow the layers to separate.

Acceptance criteria: No blue color is observed in the organic solvent layer.

SPECIFIC TESTS

- **CLOUD POINT**

Sample solution: Transfer 1.0 g of Tyloxapol, previously mixed, to a 150-mL beaker. Add 100.0 mL of water, and mix until dissolved. Warm the solution while mixing.

Analysis: Transient turbidity may be observed as the solution is warmed. Determine the temperature at which the mixture becomes completely turbid.

Acceptance criteria: The cloud point is between 92° and 97°.

- **pH (791)**

Sample solution: 50 mg/mL

Acceptance criteria: 4.0–7.0

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.

- **USP REFERENCE STANDARDS (11).**

[USP Tyloxapol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TYLOXAPOL	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-A96ADA60-D436-4C33-BC5F-8217B8717A4E_2_en-US

DOI: https://doi.org/10.31003/USPNF_M87030_02_01

DOI ref: [okw2i](#)