


Status: Currently Official on 17-Feb-2025  
Official Date: Official as of 01-May-2020  
Document Type: USP Monographs  
DocId: GUID-9EBBECFA-F8E3-44C7-981B-7C62C4C1CB0D\_4\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M85228\\_04\\_01](https://doi.org/10.31003/USPNF_M85228_04_01)  
DOI Ref: c3vhb

© 2025 USPC  
Do not distribute

## Trentine Hydrochloride



$C_6H_{18}N_4 \cdot 2HCl$  219.16

1,2-Ethanediamine, *N,N'*-bis(2-aminoethyl)-, dihydrochloride.

Triethylenetetramine dihydrochloride CAS RN®: 38260-01-4; UNII: HC3NX54582.

» Trientine Hydrochloride contains not less than 97.0 percent and not more than 103.0 percent of  $C_6H_{18}N_4 \cdot 2HCl$ , calculated on the dried basis.

**Packaging and storage**—Preserve under an inert gas in tight, light-resistant containers, and store in a refrigerator.

**USP REFERENCE STANDARDS (11)**—

[USP Trentine Hydrochloride RS](#)

**Change to read:**

**Identification**, ▲ [SPECTROSCOPIC IDENTIFICATION TESTS \(197\)](#), *Infrared Spectroscopy*: 197M ▲ (CN 1-May-2020)

**pH (791)**: between 7.0 and 8.5, in a solution (1 in 100).

**Loss on Drying (731)**—Dry it in vacuum at a pressure not exceeding 5 mm of mercury at 40° for 4 hours: it loses not more than 2.0% of its weight.

**Residue on Ignition (281)**: not more than 0.15%.

**Chromatographic purity**—The sum of the intensities of all secondary spots obtained from the *Test preparation* in *Part I* and *Part II* corresponds to not more than 2.0%.

**Part I**—

**Spray reagent**—Dissolve 300 mg of ninhydrin in a mixture of 100 mL of butyl alcohol and 3 mL of glacial acetic acid.

**Standard preparation A**—[*NOTE*—Use low-actinic glassware.] Dissolve an accurately weighed quantity of [USP Trentine Hydrochloride RS](#) in methanol to obtain a solution containing 10 mg per mL.

**Standard preparation B**—[*NOTE*—Use low-actinic glassware.] Dissolve an accurately weighed quantity of diethylenetriamine in methanol to obtain a solution containing 1.0 mg per mL. Transfer 3.0 mL of this solution to a 100-mL volumetric flask, dilute with methanol to volume, and mix.

**Standard preparation C**—[*NOTE*—Use low-actinic glassware.] Dissolve an accurately weighed quantity of 1-(2-aminoethyl)piperazine in methanol to obtain a solution containing 1.0 mg per mL. Transfer 10.0 mL of this solution to a 100-mL volumetric flask, dilute with methanol to volume, and mix.

**Standard preparation D**—[*NOTE*—Use low-actinic glassware.] Transfer 5.0 mL of *Standard preparation C* to a 10-mL volumetric flask, dilute with methanol to volume, and mix.

**Test preparation**—[*NOTE*—Use low-actinic glassware.] Dissolve an accurately weighed quantity of Trientine Hydrochloride in methanol to obtain a solution containing 10 mg per mL.

**Procedure**—Apply separately 3  $\mu$ L each of the *Test preparation*, of *Standard preparation B*, and of *Standard preparation C* to a suitable unwashed, high performance thin-layer chromatographic plate (see [Chromatography \(621\)](#)) having a 1.5-cm preadsorbent zone and coated with a 0.15-mm layer of chromatographic silica gel mixture. To a fourth spot, apply 3  $\mu$ L each of *Standard preparations A, B, and C*. To a fifth spot, apply 3  $\mu$ L each of *Standard preparations A, B, and D*. Allow the spots to dry, place the plate in a chromatographic chamber, and develop the chromatograms in a solvent system consisting of a mixture of isopropyl alcohol and ammonium hydroxide (3:2) until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the developing chamber, mark the solvent front, and dry the plate with the aid of a current of air. Spray the plate with *Spray reagent*, dry at 105° for 5 minutes, and observe the plate under long-wavelength UV light. Determine the locus of the diethylenetriamine and the 1-(2-aminoethyl)piperazine spots from the chromatograms of *Standard preparations B* and *C*, respectively. Determine the concentration of diethylenetriamine in the *Test preparation* by comparing the size and intensity of any secondary spot from the chromatogram of the *Test preparation* having an  $R_F$  value corresponding to the  $R_F$  value of diethylenetriamine with the diethylenetriamine spots obtained from the chromatograms of the *Standard preparation* mixtures. Determine the

concentration of any other observed impurities in the *Test preparation* by comparing the size and intensity of any other secondary spots from the chromatogram of the *Test preparation* with the 1-(2-aminoethyl)piperazine spots obtained from the chromatograms of the *Standard preparation* mixtures.

*Part II—*

*Spray reagent*—Dissolve 200 mg of ninhydrin in 100 mL of alcohol.

*Tris(2-aminoethyl)amine stock solution*—[*NOTE*—Use low-actinic glassware.] Dissolve an accurately weighed quantity of tris(2-aminoethyl)amine in methanol to obtain a solution containing 1.0 mg per mL.

*Standard preparation A*—[*NOTE*—Use low-actinic glassware.] Dissolve an accurately weighed quantity of [USP Trientine Hydrochloride RS](#) in methanol to obtain a solution containing 10 mg per mL.

*Standard preparation B*—[*NOTE*—Use low-actinic glassware.] Transfer 1.0 mL of *Tris(2-aminoethyl)amine stock solution* to a 10-mL volumetric flask, dilute with methanol to volume, and mix.

*Standard preparation C*—[*NOTE*—Use low-actinic glassware.] Transfer 0.5 mL of *Tris(2-aminoethyl)amine stock solution* to a 10-mL volumetric flask, dilute with methanol to volume, and mix.

*Test preparation*—[*NOTE*—Use low-actinic glassware.] Dissolve an accurately weighed quantity of Trientine Hydrochloride in methanol to obtain a solution containing 10 mg per mL.

*Procedure*—Apply separately 3  $\mu$ L each of the *Test preparation* and of *Standard preparation A* to a suitable thin-layer chromatographic plate (see [Chromatography \(621\)](#)) coated with a 0.25-mm layer of chromatographic silica gel mixture and previously washed with methanol. To a third spot apply 3  $\mu$ L each of *Standard preparations A* and *B*. To a fourth spot, apply 3  $\mu$ L each of *Standard preparations A* and *C*. Allow the spots to dry, place the plate in a chromatographic chamber, and develop the chromatograms in a solvent system consisting of a mixture of ammonium hydroxide and alcohol (2:1) at a temperature of 2° to 6° until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the developing chamber, mark the solvent front, and dry the plate with the aid of a current of air. Spray the plate with *Spray reagent*, dry at 105° for 5 minutes, and observe the plate under long-wavelength UV light. Determine the concentration of tris(2-aminoethyl)amine in the *Test preparation* by comparing the size and intensity of any secondary spot from the chromatogram of the *Test preparation* having an  $R_F$  value corresponding to the  $R_F$  value of tris(2-aminoethyl)amine with the tris(2-aminoethyl)amine spots obtained from the chromatograms of the *Standard preparation* mixtures.

**Assay**—Dissolve about 220 mg of Trientine Hydrochloride, accurately weighed, in 150 mL of water in a 250-mL beaker. Adjust with hydrochloric acid to a pH of 2.0; then adjust with ammonium hydroxide to a pH of 9.5 ± 0.5; and then adjust with glacial acetic acid to a pH of 5.0. Heat the solution to 90°, and while hot, titrate with 0.1 N cupric nitrate VS, determining the endpoint potentiometrically, using an electrode system consisting of a cupric ion-selective electrode and a calomel reference electrode with an outer filling solution of 1 M potassium nitrate. Perform a blank determination (see [Titrimetry \(541\)](#)), and make any necessary correction. Each mL of 0.1 N cupric nitrate is equivalent to 21.92 mg of  $C_6H_{18}N_4 \cdot 2HCl$ .

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee          |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|
| TRIENTINE HYDROCHLORIDE    | <a href="#">Documentary Standards Support</a>                               | SM32020 Small Molecules 3 |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM32020 Small Molecules 3 |

**Chromatographic Database Information:** [Chromatographic Database](#)

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. Information currently unavailable

**Current DocID: GUID-9EBBECFA-F8E3-44C7-981B-7C62C4C1CB0D\_4\_en-US**

**DOI:** [https://doi.org/10.31003/USPNF\\_M85228\\_04\\_01](https://doi.org/10.31003/USPNF_M85228_04_01)

**DOI ref:** [c3vhb](#)