

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-02F4E66C-CDA8-4B22-80B8-CB8A7C9A35C4_2_en-US
 DOI: https://doi.org/10.31003/USPNF_M85135_02_01
 DOI Ref: 387k8

© 2025 USPC
 Do not distribute

Triclocarban

$C_{13}H_9Cl_3N_2O$ 315.58

Urea, *N*-(4-chlorophenyl)-*N'*-(3,4-dichlorophenyl)-;
 3,4,4'-Trichlorocarbanilide;
 1-(4-Chlorophenyl)-3-(3,4-dichlorophenyl)urea CAS RN®: 101-20-2; UNII: BGG1Y1ED0Y.

DEFINITION

Triclocarban contains NLT 97.0% and NMT 103.0% of triclocarban ($C_{13}H_9Cl_3N_2O$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. ▲[SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)▲ (CN 1-May-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: Acetonitrile, methanol, water, and glacial acetic acid (400:500:300:1.5)

System suitability solution: 0.1 mg/mL each of [USP Triclocarban RS](#), [USP Triclocarban Related Compound A RS](#), and [USP Triclocarban Related Compound C RS](#) in acetonitrile

Standard solution: 0.1 mg/mL of [USP Triclocarban RS](#) in acetonitrile. The solution is stable for 12 h.

Sample solution: 0.1 mg/mL of Triclocarban in acetonitrile. The solution is stable for 12 h.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 265 nm

Column: 4.6-mm × 25-cm; 5-μm packing L1

Flow rate: 2 mL/min

Injection volume: 20 μL

System suitability

Samples: System suitability solution and Standard solution

[**NOTE**—The relative retention times for triclocarban related compound A, triclocarban, and triclocarban related compound C are 0.7, 1.0, and 1.6, respectively.]

Suitability requirements

Resolution: NLT 2.0 between triclocarban related compound A and triclocarban, NLT 2.0 between triclocarban and triclocarban related compound C, System suitability solution

Relative standard deviation: NMT 2.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of triclocarban ($C_{13}H_9Cl_3N_2O$) in the portion of Triclocarban taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution* r_s = peak response from the *Standard solution* C_s = concentration of [USP Triclocarban RS](#) in the *Standard solution* (mg/mL) C_u = concentration of Triclocarban in the *Sample solution* (mg/mL)**Acceptance criteria:** 97.0%–103.0% on the dried basis**IMPURITIES****• ORGANIC IMPURITIES****Mobile phase:** Acetonitrile, methanol, water, and glacial acetic acid (370:380:250:1)**Internal standard solution:** 0.12 mg/mL of *p*-nitrochlorobenzene in methanol**Standard solution:** 2 μ g/mL each of [USP Triclocarban RS](#), [USP Triclocarban Related Compound A RS](#), [USP Triclocarban Related Compound C RS](#), [USP Triclocarban Related Compound D Mixture RS](#), and 2.4 μ g/mL of *p*-nitrochlorobenzene from the *Internal standard solution*. Dissolve and dilute with methanol to volume.**Sample solution:** 0.2 mg/mL of Triclocarban and 2.4 μ g/mL of *p*-nitrochlorobenzene from the *Internal standard solution*. Dissolve and dilute with methanol to volume.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 254 nm**Column:** 4.6-mm \times 15-cm; 5- μ m packing L1**Column temperature:** 40°**Flow rate:** 1.3 mL/min**Injection volume:** 20 μ L**System suitability****Sample:** *Standard solution***Suitability requirements****Signal-to-noise ratio:** NLT 10 for triclocarban related compound A, triclocarban related compound C, and triclocarban related compound D mixture**Relative standard deviation:** NMT 2.0% for triclocarban**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Triclocarban taken:

$$\text{Result} = (R_u/R_s) \times (C_s/C_u) \times 100$$

 R_u = peak response ratio of each impurity to the internal standard from the *Sample solution* R_s = peak response ratio of corresponding specified impurity to the internal standard from the *Standard solution* (use the triclocarban peak response ratio to calculate for any individual impurity) C_s = concentration of each impurity in the *Standard solution* (μ g/mL) C_u = concentration of Triclocarban in the *Sample solution* (μ g/mL)**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
<i>p</i> -Nitrochlorobenzene ^a	0.45	—
Triclocarban related compound A ^b	0.64	1.0

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Triclocarban	1.00	—
Triclocarban related compound C ^c	1.66	1.0
Triclocarban related compound D mixture ^d	2.72 and 3.25	1.0
Any other individual impurity	—	1.0
Total impurities	—	2.0

^a Internal standard—for information only.

^b 1,3-Bis(4-chlorophenyl)urea.

^c 1,3-Bis(3,4-dichlorophenyl)urea.

^d Consists of two components, triarylbiuret 1 and triarylbiuret 2. Triarylbiuret 1 is [3,5-bis(4-chlorophenyl)-1-(3,4-dichlorophenyl)biuret] with RRT of 2.72. Triarylbiuret 2 is [1,5-bis(4-chlorophenyl)-3-(3,4-dichlorophenyl)biuret] with RRT of 3.25. The acceptance criteria is the sum of triarylbiuret 1 and triarylbiuret 2.

• CHLOROANILINES

Dimethylformamide solution: 5% dimethylformamide in 1 N hydrochloric acid

Sodium nitrite solution: 2.5 mg/mL of sodium nitrite in water

Ammonium sulfamate solution: 25 mg/mL of ammonium sulfamate in water

N-(1-naphthyl)ethylenediamine dihydrochloride solution: 10 mg/mL in water

Standard stock solution 1: 560 µg/mL of 3,4-dichloroaniline and 440 µg/mL of *p*-chloroaniline dissolved in 2% of the final volume with the *Dimethylformamide solution*. Dilute with 0.2 N hydrochloric acid to volume.

Standard stock solution 2: 56 µg/mL of 3,4-dichloroaniline and 44 µg/mL of *p*-chloroaniline in 0.2 N hydrochloric acid from **Standard stock solution 1**

Standard stock solution 3: 5.6 µg/mL of 3,4-dichloroaniline and 4.4 µg/mL of *p*-chloroaniline in 0.2 N hydrochloric acid from **Standard stock solution 2**

Standard stock solution 4: 0.56 µg/mL of 3,4-dichloroaniline and 0.44 µg/mL of *p*-chloroaniline in 0.2 N hydrochloric acid from **Standard stock solution 3**

Standard solutions: Prepare **Standard solutions 1–9** as listed in [Table 2](#). Transfer the aliquot of the **Standard stock solution** to each individual 25-mL volumetric flask. Place all flasks in an ice bath at 0° to 5° for 10 min. Add to each volumetric flask 1 mL of **Sodium nitrite solution**, shake well, and let the solution stand for 10 min in the ice bath. Add to each flask 1 mL of the **Ammonium sulfamate solution**, shake well, and allow the reaction to take place for 10 min inside the ice bath. Add 2 mL of the **N-(1-naphthyl)ethylenediamine dihydrochloride solution** to each **Standard solution 1–8**, and remove all volumetric flasks from the ice bath. Do not add the **N-(1-naphthyl)ethylenediamine dihydrochloride solution** to **Standard solution 9**. Dilute all solutions with 0.2 N hydrochloric acid to volume. Allow to stand for at least 30 s, and measure the absorbance within 15 min.

Table 2

Standard Solution	Standard Stock Solution Used	Volume of Standard Stock Solution (mL)	Concentration of Total Chloroaniline (ppm)
1	Standard stock solution 4	2	20
2	Standard stock solution 4	5	50
3	Standard stock solution 4	10	100
4	Standard stock solution 4	15	150

Standard Solution	Standard Stock Solution Used	Volume of Standard Stock Solution (mL)	Concentration of Total Chloroaniline (ppm)
5	Standard stock solution 3	2	200
6	Standard stock solution 3	3	300
7	Standard stock solution 3	4	400
8	Standard stock solution 3	5	500
9	Standard stock solution 3	5	0

Sample stock solution: Dissolve 500 mg of Triclocarban with 5 mL of the *Dimethylformamide solution* in a 50-mL beaker, and shake the solution. Continue shaking the solution while adding 15 mL of 0.2 N hydrochloric acid to precipitate the product, and shake for 15 min. Filter the suspension into a 50-mL volumetric flask, and dilute with 0.2 N hydrochloric acid to volume.

Sample solution: Transfer 10 mL of the *Sample stock solution* to a 25-mL volumetric flask, and place in an ice bath at 0° to 5° for 10 min. Add 1 mL of the *Sodium nitrite solution*, shake well, and let the solution stand for 10 min in the ice bath. Add 1 mL of the *Ammonium sulfamate solution*, shake well, and allow to stand for 10 min. Add 1 mL of the *N-(1-naphthyl)ethylenediamine dihydrochloride solution*, and remove the solution from the ice bath. Dilute with 0.2 N hydrochloric acid to volume. Allow to stand for at least 30 s, and measure the absorbance within 15 min.

Sample solution blank: Follow the procedure described in the preparation of the *Sample solution* but do not add the *N-(1-naphthyl)ethylenediamine dihydrochloride solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 552 nm

Analysis

Samples: Standard solutions and Sample solution

Calibrate the absorbance to zero with *Standard solution 9*. Generate a calibration curve of absorbance against concentration of total chloroaniline using the data from *Standard solutions 1–8*. Determine the concentration, C_s , in $\mu\text{g/mL}$, of chloroanilines in the *Sample solution* using the calibration curve. Calculate the concentration, in ppm, of chloroanilines in the portion of Triclocarban taken:

$$\text{Result} = (C_s/C_u) \times F$$

C_s = concentration of chloroanilines in the *Sample solution* ($\mu\text{g/mL}$)

C_u = concentration of Triclocarban in the *Sample solution* ($\mu\text{g/mL}$)

F = conversion factor to ppm (10^6)

Acceptance criteria: NMT 400 ppm

SPECIFIC TESTS

- [Loss on Drying \(731\)](#).

Sample: Dry a sample at 110° for 4 h.

Acceptance criteria: NMT 0.2%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed container. Store at ambient temperature and humidity.

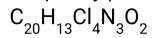
- [USP REFERENCE STANDARDS \(11\)](#).

[USP Triclocarban RS](#)

[USP Triclocarban Related Compound A RS](#)

1,3-Bis(4-chlorophenyl)urea.

$\text{C}_{13}\text{H}_{10}\text{Cl}_2\text{N}_2\text{O}$ 281.14


[USP Triclocarban Related Compound C RS](#)

1,3-Bis(3,4-dichlorophenyl)urea.

$\text{C}_{13}\text{H}_8\text{Cl}_4\text{N}_2\text{O}$ 350.03

[USP Triclocarban Related Compound D Mixture RS](#)

Mixture of triarylbiuret 1 (3,5-bis(4-chlorophenyl)-1-(3,4-dichlorophenyl)biuret and triarylbiuret 2 (1,5-bis(4-chlorophenyl)-3-(3,4-dichlorophenyl)biuret).

469.15

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TRICLOCARBAN	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(6)

Current DocID: [GUID-02F4E66C-CDA8-4B22-80B8-CB8A7C9A35C4_2_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M85135_02_01

DOI ref: [387k8](#)

OFFICIAL