

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-Aug-2024
Document Type: USP Monographs
DocId: GUID-F8721089-4EFC-43A4-845A-781DAF48AEFE_8_en-US
DOI: https://doi.org/10.31003/USPNF_M84415_08_01
DOI Ref: uee35

© 2025 USPC
Do not distribute

Tranexamic Acid Injection

DEFINITION

Tranexamic Acid Injection is a sterile solution of Tranexamic Acid in Water for Injection. It contains NLT 90.0% and NMT 110.0% of the labeled amount of tranexamic acid ($C_8H_{15}NO_2$).

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#)

Sample: Transfer the content of Injection into a beaker and heat on a hot plate at 100° for 30 min, until a paste appears. Then heat it in an oven to complete dryness at 110° for about 30 min.

Acceptance criteria: Meets the requirements

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

- PROCEDURE

Buffer: Dissolve 11 g of [monobasic sodium phosphate](#) in 500 mL of [water](#), and add 5 mL of [triethylamine](#). Add 1.4 g of [sodium lauryl sulfate](#), adjust with diluted [phosphoric acid](#) (10% w/w) to a pH of 2.5, and dilute with water to 600 mL.

Mobile phase: Methanol and *Buffer* (40:60)

Standard solution: 1 mg/mL of [USP Tranexamic Acid RS](#) in [water](#)

Sample solution: Nominally 1 mg/mL of tranexamic acid prepared as follows. Transfer an accurately measured volume of Injection from a composite of contents from NLT 3 vials to a suitable volumetric flask, and dilute with [water](#) to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; 5-μm packing [L1](#)

Column temperature: 35°

Flow rate: 1.5 mL/min

Injection volume: 20 μL

Run time: 2 times the retention time of tranexamic acid

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of tranexamic acid ($C_8H_{15}NO_2$) in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of tranexamic acid from the *Sample solution*

r_S = peak response of tranexamic acid from the *Standard solution*

C_S = concentration of [USP Tranexamic Acid RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of tranexamic acid in the *Sample solution* (mg/mL)

IMPURITIES**• ORGANIC IMPURITIES**

Buffer and Mobile phase: Prepare as directed in the Assay.

System suitability solution: 0.2 mg/mL of [USP Tranexamic Acid RS](#) and 2 µg/mL of [USP Tranexamic Acid Related Compound C RS](#) in [water](#)

Sensitivity solution: 0.01 mg/mL of [USP Tranexamic Acid RS](#) in [water](#)

Standard solution: 0.05 mg/mL of [USP Tranexamic Acid RS](#) in [water](#)

Sample solution: Nominally 10 mg/mL of tranexamic acid prepared as follows. Transfer an accurately measured volume of Injection to an appropriate volumetric flask, and dilute with [water](#) to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 220 nm

Column: 4.6-mm × 25-cm; 5-µm packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 20 µL

Run time: 3.3 times the retention time of tranexamic acid

System suitability

Samples: System suitability solution, Sensitivity solution, and Standard solution

Suitability requirements

Resolution: NLT 2.0 between tranexamic acid and tranexamic acid related compound C, System suitability solution

Signal-to-noise ratio: NLT 10, Sensitivity solution

Relative standard deviation: NMT 5.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each unspecified impurity in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of each unspecified impurity from the Sample solution

r_s = peak response of tranexamic acid from the Standard solution

C_s = concentration of [USP Tranexamic Acid RS](#) in the Standard solution (mg/mL)

C_u = nominal concentration of tranexamic acid in the Sample solution (mg/mL)

Acceptance criteria: See [Table 1](#). Disregard any impurity peaks less than 0.03%.

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Tranexamic acid	1.0	—
Tranexamic acid related compound C ^a	1.1	—
Aminomethylbenzoic acid ^{a,b}	1.3	—
cis-Tranexamic acid ^{a,c}	1.5	—
Ditranexamic acid amine ^{a,d}	2.1	—
Any unspecified impurity	—	0.1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Total impurities	—	0.5

^a For identification only. These are process impurities monitored in the drug substance and are not included in the total impurities.

^b 4-(Aminomethyl)benzoic acid.

^c *cis*-4-(Aminomethyl)cyclohexanecarboxylic acid.

^d *trans,trans*-4,4'-[Iminobis(methylene)]dicyclohexanecarboxylic acid.

SPECIFIC TESTS

- [pH \(791\)](#): 6.5–8.0
- [PARTICULATE MATTER IN INJECTIONS \(788\)](#): It meets the requirements for small-volume injections.
- [STERILITY TESTS \(71\)](#): Meets the requirements
- [BACTERIAL ENDOTOXINS TEST \(85\)](#): NMT 0.5 USP Endotoxin Units/mg of tranexamic acid
- **OTHER REQUIREMENTS:** It meets the requirements in [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in single-dose containers and store at controlled room temperature.

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#)

USP Tranexamic Acid RS

USP Tranexamic Acid Related Compound C RS

▲(RS)-4-(Aminomethyl)cyclohex-1-enecarboxylic acid hydrochloride.

C8H13NO2.HCl 191.66▲ (CN 1-Aug-2024)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TRANEXAMIC ACID INJECTION	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(1)

Current DocID: [GUID-F8721089-4EFC-43A4-845A-781DAF48AEFE_8_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M84415_08_01

DOI ref: [uee35](#)