

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-A522A6EA-B0B1-4CAD-9316-E91EC79B3D8D_2_en-US
 DOI: https://doi.org/10.31003/USPNF_M84314_02_01
 DOI Ref: 1fet7

© 2025 USPC
 Do not distribute

Topiramate Tablets

DEFINITION

Topiramate Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of topiramate ($C_{12}H_{21}NO_8S$).

IDENTIFICATION

Change to read:

- A. **▲SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy:** 197F▲ (CN 1-May-2020)

Wavenumber range: 4000–650 cm^{-1}

Standard solution: 20 mg/mL of [USP Topiramate RS](#) in acetone

Sample solution: Grind an appropriate number of Tablets to prepare a 20-mg/mL topiramate solution in acetone. Shake the solution for 30 min, and centrifuge for 10 min. Then pass an aliquot of the clear supernatant through a suitable nylon filter of 0.45- μm pore size, and use the filtrate for analysis.

Analysis: Apply 50 μL of the *Standard solution* to a sodium chloride plate, allow the solution to dry, and then obtain the IR spectrum. Wash the window with acetone, and repeat the same procedure using the *Sample solution*.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 1.54 g/L of ammonium acetate in water. Adjust with glacial acetic acid to a pH of 4.0.

Diluent: Methanol and water (1:4)

Mobile phase: Methanol and *Buffer* (1:4)

Standard solution: 6 mg/mL of [USP Topiramate RS](#) in *Diluent*

Sample solution: 6 mg/mL of topiramate in *Diluent* from NLT 12 Tablets, based on the label claim. [NOTE—Shake vigorously for at least 30 min, and pass a portion through a chemical-resistant filter (PTFE) of 0.45- μm pore size.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index

Column: 4.6-mm \times 25-cm; 5- μm packing L1

Temperature

Column: 35°

Detector: 35°

Flow rate: 1.5 mL/min

Injection size: 100 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of topiramate ($C_{12}H_{21}NO_8S$) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Topiramate RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of topiramate in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

• [Dissolution \(711\)](#).

Test 1

Medium: Water; 900 mL

Apparatus 2: 50 rpm

Time: 20 min

Mobile phase: 0.1% trifluoroacetic acid in water and methanol (1:1)

Standard solution: 0.1 mg/mL of [USP Topiramate RS](#) in *Medium*

Sample solution: Pass a portion of the solution under test through a suitable filter of 1- μ m pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index

Guard column: 4.0-mm \times 1-cm

Column: 4.6-mm \times 25-cm; 5- μ m packing L11

Temperature

Column: 40°

Detector: 40°

Flow rate: 1.2 mL/min

Injection size: 100 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of topiramate ($C_{12}H_{21}NO_8S$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Topiramate RS](#) in the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of topiramate is dissolved.

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: Water; 900 mL, deaerated

Apparatus 2: 50 rpm

Time: 40 min

Standard solution: (L/900) mg/mL of [USP Topiramate RS](#) in *Medium*, where L is the label claim in mg/Tablet

Sample solution: Pass a portion of the solution under test through a suitable filter, discarding the first few mL.

Mobile phase: Water and acetonitrile (1:1)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Refractive index**Column:** 4.6-mm × 25-cm; 5-μm packing L1**Temperature****Column:** 30°**Detector:** 50°**Flow rate:** 1.0 mL/min**Injection size:** 100 μL**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Column efficiency:** NLT 5000 theoretical plates**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of topiramate ($C_{12}H_{21}NO_8S$) dissolved:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times V \times 100$$

 r_U = peak response from the Sample solution r_S = peak response from the Standard solution C_S = concentration of [USP Topiramate RS](#) in the Standard solution (mg/mL) L = label claim (mg/Tablet) V = volume of Medium, 900 mL**Tolerances:** NLT 80% (Q) of the labeled amount of topiramate is dissolved.**Test 3:** If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 3.**Medium:** Water; 900 mL**Apparatus 2:** 50 rpm**Time:** 30 min**Diluent:** Acetonitrile and water (1:1)**Mobile phase:** Water and acetonitrile (55:45)**Standard solution:** 1.1 mg/mL of [USP Topiramate RS](#) in Diluent. Dilute with Medium to obtain a final concentration of about (L/900) mg/mL, where L is the label claim in mg/Tablet.**Sample solution:** Pass a portion of the solution under test through a suitable filter, discarding the first few mL.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** Refractive index**Column:** 4.6-mm × 25-cm; 5-μm packing L1**Temperature****Column:** 50°**Detector:** 50°**Flow rate:** 1.2 mL/min**Injection size:** 100 μL**System suitability****Sample:** Standard solution**Suitability requirements****Column efficiency:** NLT 2000 theoretical plates**Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of topiramate ($C_{12}H_{21}NO_8S$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s/L) \times V \times 100$$

r_u = peak response from the *Sample solution*

r_s = peak response from the *Standard solution*

C_s = concentration of [USP Topiramate RS](#) in the *Standard solution* (mg/mL)

L = label claim (mg/Tablet)

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of topiramate is dissolved.

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES

• RELATED COMPOUNDS

Diluent, Mobile phase, Sample solution, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 1.2 mg/mL of [USP Topiramate RS](#) and 0.6 mg/mL of [USP Topiramate Related Compound A RS](#) in *Diluent*

Peak identification solution: 0.6 mg/mL each of [USP Topiramate RS](#) and [USP Topiramate Related Compound A RS](#) in *Diluent*

System suitability

Samples: *Standard solution* and *Peak identification solution*

[**NOTE**—Identify the peaks due to topiramate related compound A and topiramate using the relative retention times given in [Table 1](#).]

Suitability requirements

Relative standard deviation: NMT 5.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

r_u = peak response for the individual impurity from the *Sample solution*

r_s = peak response of topiramate from the *Standard solution*

C_s = concentration of [USP Topiramate RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of topiramate in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 1](#))

Acceptance criteria See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Topiramate related compound A	0.66	1.1	0.5
Topiramate	1.0	—	—
Individual unspecified degradation product	—	—	0.2
Total impurities	—	—	0.7

SPECIFIC TESTS**• LIMIT OF SULFAMATE AND SULFATE**

[NOTE—Use water with resistivity NLT 18 megohm-cm for preparation of the *Mobile phase*, *Standard solution*, and *Sample solution*.]

Buffer: 0.8 g/L of *p*-hydroxybenzoic acid in water

Mobile phase: Methanol and *Buffer* (2.5:97.5). Adjust with sodium hydroxide solution to a pH of 9.4 ± 0.5.

Standard solution: 0.015 mg/mL each of sodium sulfate and sulfamic acid in *Mobile phase* from anhydrous sodium sulfate and sulfamic acid, respectively

Sample solution: Transfer a suitable amount of ground powder from NLT 20 Tablets to a suitable volumetric flask to obtain a nominal concentration of 6 mg/mL of topiramate. Add 80% of the flask volume of *Mobile phase*, and shake for 30 min. Sonicate for 10 min, and dilute with *Mobile phase* to volume. Centrifuge, and pass through a polyethersulfone membrane filter of 0.45-µm pore size, discarding the first 3 mL of the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity

Column: 4.6-mm × 15-cm; 5-µm packing L47

Detector temperature: 30°

Flow rate: 1.5 mL/min

[NOTE—A suitable background suppression unit may be used.]

Injection size: 70 µL

System suitability

Sample: *Standard solution*

[NOTE—The approximate relative retention time of the sulfamate ion peak is 0.44 relative to the sulfate ion peak.]

Suitability requirements

Relative standard deviation: NMT 15.0% for the sulfamate and sulfate peaks

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of sulfate ion in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of sulfate ion from the *Sample solution*

r_S = peak response of sulfate ion from the *Standard solution*

C_S = concentration of sodium sulfate in the *Standard solution* (mg/mL)

C_U = concentration of topiramate in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of the sulfate anion, 96.04

M_{r2} = molecular weight of anhydrous sodium sulfate, 142.04

Calculate the percentage of sulfamate ion in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

r_U = peak response of sulfamate ion from the *Sample solution*

r_S = peak response of sulfamate ion from the *Standard solution*

C_S = concentration of sulfamic acid in the *Standard solution* (mg/mL)

C_U = concentration of topiramate in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of the sulfamate anion, 96.09

M_{r2} = molecular weight of sulfamic acid, 97.09

Acceptance criteria: NMT 0.25% of sulfate ion; NMT 0.25% of sulfamate ion

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Store in tightly closed containers at controlled room temperature, protected from moisture.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- **USP REFERENCE STANDARDS (11).**

USP Topiramate RS2,3:4,5-Di-O-isopropylidene- β -D-fructopyranose sulfamate. $C_{12}H_{21}NO_8S$ 339.36USP Topiramate Related Compound A RS2,3:4,5-Bis-O-(1-methylethylidene)- β -D-fructopyranose. $C_{12}H_{20}O_6$ 260.28

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TOPIRAMATE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 34(5)

Current DocID: GUID-A522A6EA-B0B1-4CAD-9316-E91EC79B3D8D_2_en-US**DOI: https://doi.org/10.31003/USPNF_M84314_02_01****DOI ref: [1fet7](#)**