

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-Dec-2024
Document Type: USP Monographs
DocId: GUID-CF29F020-77E9-459F-87A7-E45349EA509B_4_en-US
DOI: https://doi.org/10.31003/USPNF_M83766_04_01
DOI Ref: 2axl5

© 2025 USPC
Do not distribute

Tobramycin Inhalation Solution

DEFINITION

Tobramycin Inhalation Solution is a sterile, nonpyrogenic, preservative-free solution of Tobramycin in Water for Injection containing Sodium Chloride. It is prepared with the aid of Sulfuric Acid or Sodium Hydroxide and contains, in each milliliter, NLT 90.0% and NMT 110.0% of the labeled amount of tobramycin ($C_{18}H_{37}N_5O_9$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Derivatized sample solution* corresponds to that of the *Derivatized standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Mobile phase: Dissolve 2.0 g of [tris\(hydroxymethyl\)aminomethane](#) in about 800 mL of [water](#). To this solution add 20 mL of [1 N sulfuric acid](#), and dilute with [acetonitrile](#) to obtain 2000 mL of solution. Allow to cool, and pass through a filter of 0.2- μ m or finer pore size.

Blank: [Water](#)

2,4-Dinitrofluorobenzene reagent: 10 mg/mL of [2,4-dinitrofluorobenzene](#) in [alcohol](#). This solution may be used for 5 days if refrigerated when not in use.

Tris(hydroxymethyl)aminomethane stock reagent: 15 mg/mL of [tris\(hydroxymethyl\)aminomethane](#) in [water](#). This reagent may be used for 1 month if refrigerated when not in use.

Tris(hydroxymethyl)aminomethane reagent: 3 mg/mL of [tris\(hydroxymethyl\)aminomethane](#) prepared as follows. Transfer 40 mL of [Tris\(hydroxymethyl\)aminomethane stock reagent](#) to a 200-mL volumetric flask, add [dimethyl sulfoxide](#) with mixing, and dilute with [dimethyl sulfoxide](#) to volume. Use this reagent within 4 h. If kept immersed in an ice-water bath below 10°, the reagent may be used for up to 8 h.

Standard stock solution: 1.1 mg/mL of [USP Tobramycin RS](#) prepared as follows. Weigh a suitable amount of [USP Tobramycin RS](#) into a suitable volumetric flask. Add [1 N sulfuric acid](#), using 2% of the final volume, and enough [water](#) to dissolve the tobramycin, and dilute with [water](#) to volume.

Standard solution: 0.22 mg/mL of [USP Tobramycin RS](#) from the *Standard stock solution* in [water](#)

Sample solution: Nominally 0.192 mg/mL of tobramycin from the Inhalation Solution in [water](#)

Derivatization procedure: Heat all solutions at the same temperature and for the same duration of time as indicated. Move all flasks to and from the 60° constant temperature bath at the same time.

To separate 50-mL volumetric flasks transfer 4.0 mL of the *Standard solution*, 4.0 mL of the *Sample solution*, and 4.0 mL of the *Blank*. To each flask add 10 mL of [2,4-Dinitrofluorobenzene reagent](#) and 10 mL of [Tris\(hydroxymethyl\)aminomethane reagent](#), shake, and insert the stopper. Place the flasks in a constant temperature bath at 60 ± 2°, and heat for 50 ± 5 min. Remove the flasks from the bath, and allow to stand for 10 min. Add [acetonitrile](#) to about 2 mL below the 50-mL mark, allow to cool to room temperature, then dilute with [acetonitrile](#) to volume. The solutions thus obtained are the *Derivatized standard solution*, *Derivatized sample solution*, and *Derivatized blank solution*, respectively.

System suitability solution: 0.24 mg/mL of [p-naphtholbenzein](#) in [acetonitrile](#). Transfer 2 mL of this solution to a 10-mL volumetric flask, dilute with *Derivatized standard solution* to volume, and use promptly.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 365 nm

Column: 3.9-mm × 30-cm; packing [L1](#)

Flow rate: 1.2 mL/min

Injection volume: 20 μ L

System suitability

Samples: *Derivatized standard solution*, *Derivatized blank solution*, and *System suitability solution*

[NOTE—The relative retention times for *p*-naphtholbenzein and tobramycin are about 0.6 and 1.0, respectively.]

Identify the solvent and reagent peaks using the *Derivatized blank solution*.

Suitability requirements

Resolution: NLT 4.0 between *p*-naphtholbenzein and tobramycin, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Derivatized standard solution*

Analysis

Samples: *Derivatized standard solution* and *Derivatized sample solution*

Calculate the percentage of the labeled amount of tobramycin ($C_{18}H_{37}N_5O_9$) in the portion of *Inhalation Solution* taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

r_U = peak response from the *Derivatized sample solution*

r_S = peak response from the *Derivatized standard solution*

C_S = concentration of [USP Tobramycin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of tobramycin in the *Sample solution* (mg/mL)

P = potency of tobramycin in [USP Tobramycin RS](#) ($\mu\text{g}/\text{mg}$)

F = conversion factor, 0.001 mg/ μg

Acceptance criteria: 90.0%–110.0%

OTHER COMPONENTS

- **CONTENT OF SODIUM CHLORIDE**

Solution A: 2 g of [gelatin](#) and 50 mL of [nitric acid](#) in 1000 mL of [water](#)

Sample solution: Pipet 25 mL of *Inhalation Solution* into a suitable container. Add 70–100 mL of [water](#) and 10 mL of *Solution A*.

Analysis: Titrate potentiometrically with [0.1 N silver nitrate VS](#) using a suitable silver electrode.

Acceptance criteria: 90.0%–110.0% of the labeled amount of sodium chloride

PERFORMANCE TESTS

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meets the requirements

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Solution A: [Acetonitrile](#), [water](#), and [phosphoric acid](#) (5: 95: 0.08)

Solution B: [Acetonitrile](#), [water](#), and [phosphoric acid](#) (75: 25: 0.08)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	79	21
14	66	34
25	30	70
35	30	70
40	20	80
50	5	95

Blank: [Water](#)

2,4-Dinitrofluorobenzene reagent and Tris(hydroxymethyl)aminomethane reagent: Prepare as directed in the Assay.

System suitability stock solution: Dissolve [USP Tobramycin RS](#) in [water](#), and adjust with [1 N sulfuric acid](#) to a pH of 6.0. Dilute with [water](#) to obtain a solution having a known concentration of 1.1 mg/mL.

System suitability solution 1: 0.22 mg/mL of tobramycin from the *System suitability stock solution* in [water](#).

System suitability solution 2: Heat a portion of the *System suitability stock solution* in a suitable sealed glass container at 100° for 8–9 h. Cool to room temperature, and dilute with [water](#) to obtain a solution containing nominally 0.22 mg/mL of tobramycin.

Standard stock solution: Prepare as directed in the Assay.

Standard solution: 1.10 µg/mL of tobramycin from the *Standard stock solution* in [water](#).

Sample solution: Prepare as directed in the Assay.

Derivatization procedure: Heat all solutions at the same temperature and for the same duration as indicated. Move all flasks to and from the 60° constant-temperature bath at the same time.

To separate 50-mL flasks transfer 15.0 mL of *System suitability solution 1*, 15.0 mL of *System suitability solution 2*, 15.0 mL of *Standard solution*, 15.0 mL of *Sample solution*, and 15.0 mL of *Blank*. To each flask add 10 mL of *2,4-Dinitrofluorobenzene reagent* and 10 mL of *Tris(hydroxymethyl)aminomethane reagent*, shake, and insert the stopper. Place the flasks in a constant-temperature bath at 60 ± 2°, and heat for 50 ± 5 min. Remove the flasks from the bath, and allow to stand for 10 min. Add [acetonitrile](#) to about 2 mL below the 50-mL mark, allow to cool to room temperature, and dilute with [acetonitrile](#) to volume. Allow the solutions to stand for 16 h. The solutions thus obtained are *Derivatized system suitability solution 1*, *Derivatized system suitability solution 2*, *Derivatized standard solution*, *Derivatized sample solution*, and *Derivatized blank solution*.

Chromatographic system

(See [Chromatography \(621\)](#), [System Suitability](#).)

Mode: LC

Detector: UV 365 nm

Column: 4.6-mm × 25-cm; packing [L11](#)

Flow rate: 1.2 mL/min

Injection volume: 45 µL

System suitability

Samples: *Derivatized system suitability solution 1*, *Derivatized system suitability solution 2*, and *Derivatized standard solution*

[NOTE—See [Table 2](#) for relative retention times.]

Compare *Derivatized system suitability solutions 1* and *2* chromatograms to identify degradation peaks. Deoxystreptamine kanosaminide and nebramine will increase in response in *Derivatized system suitability solution 2*.

Suitability requirements

Capacity factor (*k*): NLT 15.5 for tobramycin, *Derivatized system suitability solution 2*

Resolution: NLT 1.0 between the nebramine and kanamycin peaks, *Derivatized system suitability solution 2*

Relative standard deviation: NMT 2.0%, *Derivatized standard solution*

Analysis

Samples: *Derivatized system suitability solution 1*, *Derivatized standard solution*, *Derivatized sample solution*, and *Derivatized blank solution*
Disregard any peak corresponding to those from the *Derivatized blank solution*, and subtract the quantities of any such peaks found at the relative retention times of 0.36, 0.66, and 0.94 from those found in the *Derivatized sample solution*. ▲For unspecified impurity determination, disregard any unidentified peak observed in the *Derivatized sample solution* that is also observed in *Derivatized system suitability solution 1*.▲ (USP 1-Dec-2024)

Calculate the percentage of each impurity in the portion of Inhalation Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of each impurity from the *Derivatized sample solution*

r_S = peak area of tobramycin from the *Derivatized standard solution*

C_S = concentration of [USP Tobramycin RS](#) in the *Standard solution* (µg/mL)

C_U = nominal concentration of tobramycin in the *Sample solution* (µg/mL)

Acceptance criteria: See [Table 2](#).

Table 2

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Specified unidentified impurity	0.36	0.25
Deoxystreptamine kanosaminide	0.66	0.3
Nebramine	0.94	0.4
Kanamycin B	0.96	—
Tobramycin	1.0	—
Any individual unspecified impurity	—	0.1
Total unspecified impurities	—	0.2
Total impurities	—	1.0

SPECIFIC TESTS

Change to read:

- **BACTERIAL ENDOTOXINS TEST (85):** ▲Meets the requirements▲ (USP 1-Dec-2024)
- **STERILITY TESTS (71), Test for Sterility of the Product to Be Examined, Membrane Filtration:** Meets the requirements
- **ABSORBANCE**
- Sample:** Inhalation Solution
- Analysis:** Determine the absorbance of the *Sample* at 410 nm in a 1-cm cell.
- Acceptance criteria:** NMT 0.30
- **pH (791):** 4.5–6.5
- **PARTICULATE MATTER IN INJECTIONS (788):** Meets the requirements for small-volume injections
- **OSMOLALITY AND OSMOLARITY (785):** The osmolality is 135–285 mOsmol/kg.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in low-density, polyethylene, single-use ampules stored in light-resistant foil over-wrapped packaging, in a refrigerator.
- **USP REFERENCE STANDARDS (11).**
[USP Tobramycin RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TOBRAMYCIN INHALATION SOLUTION	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 49(1)

Current DocID: GUID-CF29F020-77E9-459F-87A7-E45349EA509B_4_en-US

DOI: https://doi.org/10.31003/USPNF_M83766_04_01

OFFICIAL