

Status: Currently Official on 17-Feb-2025

Official Date: Official Prior to 2013

Document Type: USP Monographs

DocId: GUID-8C216F00-4A97-4178-A329-20269CB4212C_3_en-US

DOI: https://doi.org/10.31003/USPNF_M83775_03_01

DOI Ref: mi9qb

© 2025 USPC

Do not distribute

Tobramycin and Fluorometholone Acetate Ophthalmic Suspension

DEFINITION

Tobramycin and Fluorometholone Acetate Ophthalmic Suspension is a sterile aqueous suspension of Tobramycin and Fluorometholone Acetate. It contains NLT 90.0% and NMT 120.0% of the labeled amount of tobramycin ($C_{18}H_{37}N_5O_9$) and NLT 90.0% and NMT 115.0% of the labeled amount of fluorometholone acetate ($C_{24}H_{31}FO_5$). It may contain suitable buffers, dispersants, tonicity-adjusting agents, and preservatives.

IDENTIFICATION

- **A.** The relative retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay for *Fluorometholone Acetate*.

- **B. THIN-LAYER CHROMATOGRAPHY**

Diluent: Butyl alcohol and pyridine (100:1)

Standard solution: 6 mg/mL of [USP Tobramycin RS](#) in water

Sample solution: Allow the Ophthalmic Suspension to settle, and decant 1 mL of the supernatant into a test tube. Add 0.1 g of sodium sulfate and centrifuge. Use the clear supernatant.

Solution A: *Standard solution* and *Sample solution* (1:1)

Chromatographic system

(See [Chromatography \(621\), Thin-Layer Chromatography](#).)

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture

Application volume: 3 μ L

Developing solvent system: Methanol, chloroform, and ammonium hydroxide (60:25:30)

Spray reagent: 10 mg/mL of ninhydrin in *Diluent*

Analysis

Samples: *Standard solution*, *Sample solution*, and *Solution A*

Apply the *Standard solution*, the *Sample solution*, and *Solution A* to the plate. Place the plate in a suitable chromatographic chamber, and develop the chromatogram in the *Developing solvent system* until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the chamber, allow the solvent to evaporate, and heat the plate at 110° for 15 min. Immediately locate the spots on the plate by spraying it with *Spray reagent*.

Acceptance criteria: Tobramycin appears as a pink spot, and the R_F values of the spots of the *Sample solution* and of *Solution A*, respectively, correspond to those of the *Standard solution*.

ASSAY

- **TOBRAMYCIN**

Mobile phase: Dissolve 2.0 g of tris(hydroxymethyl)aminomethane in 800 mL of water. Add 20 mL of 1 N sulfuric acid, and dilute with acetonitrile to obtain 2000 mL of solution. Cool, and pass through a filter of 0.2- μ m or finer pore size.

Solution A: 10 mg/mL of 2,4-dinitrofluorobenzene in alcohol. This solution may be used for 5 days if refrigerated when not in use.

Solution B: 15 mg/mL of tris(hydroxymethyl)aminomethane in water. This solution may be used for 1 month if refrigerated when not in use.

Solution C: 3 mg/mL of tris(hydroxymethyl)aminomethane prepared as follows. Transfer 40 mL of *Solution B* to a 200-mL volumetric flask. Add dimethyl sulfoxide while mixing, and dilute with dimethyl sulfoxide to volume. Use this reagent within 4 h. If kept immersed in an ice-water bath below 10°, the reagent may be used for up to 8 h.

Standard stock solution: 1.1 mg of [USP Tobramycin RS](#) prepared as follows. Transfer 55 mg of [USP Tobramycin RS](#) into a 50-mL volumetric flask. Add 1 mL of 1 N sulfuric acid and enough water to dissolve it, and dilute with water to volume.

Standard solution: 0.22 mg/mL of [USP Tobramycin RS](#) from *Standard stock solution* in water

Sample solution: Nominally 0.09 mg/mL of tobramycin from Ophthalmic Suspension in water

Derivatized standard solution, Derivatized sample solution, and Blank solution: Proceed as follows. Heat all solutions at the same temperature and for the same duration of time as indicated. Move all flasks to and from the 60° constant temperature bath at the same

time.

To separate 50-mL volumetric flasks transfer 4.0 mL of the *Standard solution*, 10.0 mL of the *Sample solution*, and 4.0 mL of water. To each flask add 10 mL of *Solution A* and 10 mL of *Solution C*, shake, and insert the stopper. Place the flasks in a constant temperature bath at $60 \pm 2^\circ$, and heat for 50 ± 5 min. Remove the flasks from the bath, and allow to stand for 10 min. Add acetonitrile to about 2 mL below the 50-mL mark, allow to cool to room temperature, then dilute with acetonitrile to volume. The solutions thus obtained are the *Derivatized standard solution*, the *Derivatized sample solution*, and the *Blank solution*, respectively.

System suitability stock solution: 0.24 mg/mL of *p*-naphtholbenzein in acetonitrile. Prepare freshly.

System suitability solution: Transfer 2 mL of the *System suitability stock solution* to a 10-mL volumetric flask, dilute with *Derivatized standard solution* to volume, and use promptly.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 365 nm

Column: 3.9-mm \times 30-cm; packing L1

Flow rate: 1.2 mL/min

Injection volume: 20 μ L

System suitability

Samples: *Derivatized standard solution* and *System suitability solution*

[**NOTE**—The relative retention times for *p*-naphtholbenzein and tobramycin are about 0.6 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 4.0 between *p*-naphtholbenzein and tobramycin, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Derivatized standard solution*

Analysis

Samples: *Derivatized standard solution*, *Derivatized sample solution*, and *Blank solution*

Use the *Blank solution* to identify the solvent and reagent peaks.

Calculate the percentage of the labeled amount of tobramycin ($C_{18}H_{37}N_5O_9$) in the portion of Ophthalmic Suspension taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

r_U = peak area of tobramycin from the *Derivatized sample solution*

r_S = peak area of tobramycin from the *Derivatized standard solution*

C_S = concentration of [USP Tobramycin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of tobramycin in the *Sample solution* (mg/mL)

P = potency of tobramycin in [USP Tobramycin RS](#) (μ g/mg)

F = conversion factor, 0.001 mg/ μ g

Acceptance criteria:

90.0%–120.0%

• FLUOROMETHOLONE ACETATE

Mobile phase: Acetonitrile and water (50:50)

System suitability solution: 0.04 mg/mL each of [USP Fluorometholone RS](#) and [USP Fluorometholone Acetate RS](#) in acetonitrile

Standard solution: 0.04 mg/mL of [USP Fluorometholone Acetate RS](#) in acetonitrile

Sample stock solution: Nominally 0.1 mg/mL of fluorometholone acetate in acetonitrile, prepared as follows. Transfer Ophthalmic

Suspension, freshly mixed and free from air bubbles and containing nominally 2.5 mg of fluorometholone acetate, to a 25-mL volumetric flask. Dilute with acetonitrile to volume.

Sample solution: Nominally 0.04 mg/mL of fluorometholone acetate in acetonitrile, prepared as follows. Transfer 4.0 mL of *Sample stock solution* to a 10-mL volumetric flask, and dilute with acetonitrile to volume. Transfer a portion of this solution to a test tube, and centrifuge for 15 min. Use the clear supernatant.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4-mm \times 25-cm; packing L1

Flow rate: 1.5 mL/min

Injection volume: 10 μ L**System suitability****Samples:** System suitability solution and Standard solution

[NOTE—The relative retention times for fluorometholone and fluorometholone acetate are about 0.7 and 1.0, respectively.]

Suitability requirements**Resolution:** NLT 2.0 between fluorometholone and fluorometholone acetate, System suitability solution**Capacity factor, k' :** 1.0–5.0, fluorometholone acetate peak, Standard solution**Column efficiency:** NLT 1000 theoretical plates, Standard solution**Tailing factor:** NMT 1.35, Standard solution**Relative standard deviation:** NMT 2.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of fluorometholone acetate ($C_{24}H_{31}FO_5$) in the portion of Ophthalmic Suspension taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times 100$$

 r_U = peak area of fluorometholone acetate from the Sample solution r_S = peak area of fluorometholone acetate from the Standard solution C_S = concentration of [USP Fluorometholone Acetate RS](#) in the Standard solution (mg/mL) C_U = nominal concentration of fluorometholone in the Sample solution (mg/mL) P = potency of fluorometholone acetate in [USP Fluorometholone Acetate RS](#) (mg/mg)**Acceptance criteria:** 90.0%–115.0%**SPECIFIC TESTS**

- [STERILITY TESTS \(71\)](#): It meets the requirements in [Test for Sterility of the Product to Be Examined, Membrane Filtration](#).
- [pH \(791\)](#): 6.0–7.0

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE](#): Preserve in tight containers.

- [USP REFERENCE STANDARDS \(11\)](#):

[USP Fluorometholone RS](#)[USP Fluorometholone Acetate RS](#)[USP Tobramycin RS](#)Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TOBRAMYCIN AND FLUOROMETHOLONE ACETATE OPHTHALMIC SUSPENSION	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 46(5)

Current DocID: GUID-8C216F00-4A97-4178-A329-20269CB4212C_3_en-US**Previous DocID: GUID-8C216F00-4A97-4178-A329-20269CB4212C_1_en-US****DOI: https://doi.org/10.31003/USPNF_M83775_03_01****DOI ref: [mi9qb](#)**