

Status: Currently Official on 17-Feb-2025

Official Date: Official Prior to 2013

Document Type: USP Monographs

DocId: GUID-C47F25E6-4415-41AC-83C4-01A1E71578F8_2_en-US

DOI: https://doi.org/10.31003/USPNF_M83769_02_01

DOI Ref: 14lss

© 2025 USPC

Do not distribute

Tobramycin and Dexamethasone Ophthalmic Suspension

DEFINITION

Tobramycin and Dexamethasone Ophthalmic Suspension is a sterile aqueous suspension containing Tobramycin and Dexamethasone. It contains NLT 90.0% and NMT 120.0% of the labeled amount of tobramycin ($C_{18}H_{37}N_5O_9$), and NLT 90.0% and NMT 110.0% of the labeled amount of dexamethasone ($C_{22}H_{29}FO_5$).

IDENTIFICATION

- **A. THIN-LAYER CHROMATOGRAPHY**

Diluent: Butyl alcohol and pyridine (100:1)

Standard solution: 6 mg/mL of [USP Tobramycin RS](#) in water

Sample solution: To 1 mL of Ophthalmic Suspension in a test tube add 100 mg of sodium sulfate, disperse by shaking, and centrifuge. Use the clear supernatant.

Solution A: Standard solution and Sample solution (1:1)

Chromatographic system

(See [Chromatography \(621\), Thin-Layer Chromatography](#).)

Adsorbent: 0.25-mm layer of chromatographic silica gel mixture

Application volume: 3 μ L

Developing solvent system: Methanol, chloroform, and ammonium hydroxide (60:25:30)

Spray reagent: 10 mg/mL of ninhydrin in Diluent

Analysis

Samples: Standard solution, Sample solution, and Solution A

Apply the Standard solution, the Sample solution, and Solution A to the plate. Place the plate in a suitable chromatographic chamber, and develop the chromatogram in the Developing solvent system until the solvent front has moved about three-fourths of the length of the plate. Remove the plate from the chamber, allow the solvent to evaporate, and heat the plate at 110° for 15 min. Immediately locate the spots on the plate by spraying it with Spray reagent.

Acceptance criteria: Tobramycin appears as a pink spot, and the R_F values of the spots of the Sample solution and of Solution A, respectively, correspond to those of the Standard solution.

- **B.** The retention time of the major peak of the Sample solution corresponds to that of the Standard solution, as obtained in the Assay for Dexamethasone.

ASSAY

- **TOBRAMYCIN**

Mobile phase: Dissolve 2.0 g of tris(hydroxymethyl)aminomethane in 800 mL of water. Add 20 mL of 1 N sulfuric acid, and dilute with acetonitrile to obtain 2000 mL of solution. Cool, and pass through a filter of 0.2- μ m or finer pore size.

Solution A: 10 mg/mL of 2,4-dinitrofluorobenzene in alcohol. This solution may be used for 5 days if refrigerated when not in use.

Solution B: 15 mg/mL of tris(hydroxymethyl)aminomethane in water. This solution may be used for 1 month if refrigerated when not in use.

Solution C: 3 mg/mL of tris(hydroxymethyl)aminomethane prepared as follows. Transfer 40 mL of Solution B to a 200-mL volumetric flask.

Add dimethyl sulfoxide while mixing, and dilute with dimethyl sulfoxide to volume. Use this reagent within 4 h. If kept immersed in an ice-water bath below 10°, the reagent may be used for up to 8 h.

Standard stock solution: 1.1 mg of [USP Tobramycin RS](#) prepared as follows. Transfer 55 mg of [USP Tobramycin RS](#) into a 50-mL volumetric flask. Add 1 mL of 1 N sulfuric acid and enough water to dissolve it, and dilute with water to volume.

Standard solution: 0.22 mg/mL of [USP Tobramycin RS](#) from Standard stock solution in water

Sample solution: Nominally 0.09 mg/mL of tobramycin from Ophthalmic Suspension in water

Derivatized standard solution, Derivatized sample solution, and Blank solution: Proceed as follows. Heat all solutions at the same temperature and for the same duration of time as indicated. Move all flasks to and from the 60° constant temperature bath at the same time.

To separate 50-mL volumetric flasks transfer 4.0 mL of the *Standard solution*, 10.0 mL of the *Sample solution*, and 4.0 mL of water. To each flask add 10 mL of *Solution A* and 10 mL of *Solution C*, shake, and insert the stopper. Place the flasks in a constant temperature bath at $60 \pm 2^\circ$, and heat for 50 ± 5 min. Remove the flasks from the bath, and allow to stand for 10 min. Add acetonitrile to about 2 mL below the 50-mL mark, allow to cool to room temperature, then dilute with acetonitrile to volume. The solutions thus obtained are the *Derivatized standard solution*, the *Derivatized sample solution*, and the *Blank solution*, respectively.

System suitability stock solution: 0.24 mg/mL of *p*-naphtholbenzein in acetonitrile. Prepare freshly.

System suitability solution: Transfer 2 mL of the *System suitability stock solution* to a 10-mL volumetric flask, dilute with *Derivatized standard solution* to volume, and use promptly.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 365 nm

Column: 3.9-mm \times 30-cm; packing L1

Flow rate: 1.2 mL/min

Injection volume: 20 μ L

System suitability

Samples: *Derivatized standard solution* and *System suitability solution*

[**NOTE**—The relative retention times for *p*-naphtholbenzein and tobramycin are about 0.6 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 4.0 between *p*-naphtholbenzein and tobramycin, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Derivatized standard solution*

Analysis

Samples: *Derivatized standard solution*, *Derivatized sample solution*, and *Blank solution*

Use the *Blank solution* to identify the solvent and reagent peaks.

Calculate the percentage of the labeled amount of tobramycin ($C_{18}H_{37}N_5O_9$) in the portion of Ophthalmic Suspension taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times F \times 100$$

r_U = peak area of tobramycin from the *Derivatized sample solution*

r_S = peak area of tobramycin from the *Derivatized standard solution*

C_S = concentration of [USP Tobramycin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of tobramycin in the *Sample solution* (mg/mL)

P = potency of tobramycin in [USP Tobramycin RS](#) (μ g/mg)

F = conversion factor, 0.001 mg/ μ g

Acceptance criteria: 90.0%–120.0%

• DEXAMETHASONE

Mobile phase: Acetonitrile and water (45:55)

Standard solution: 0.04 mg/mL of [USP Dexamethasone RS](#) in methanol

Sample solution: Nominally 0.04 mg/mL of dexamethasone from Ophthalmic Suspension, freshly mixed and free of air bubbles, in methanol

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 3.9-mm \times 25-cm; packing L1

Flow rate: 1.5 mL/min

Injection volume: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Column efficiency: NLT 1400 theoretical plates

Tailing factor: NMT 1.5

Relative standard deviation: NMT 2.0%

Analysis**Samples:** Standard solution and Sample solution

Calculate the percentage of the labeled amount of dexamethasone ($C_{22}H_{29}FO_5$) in the portion of Ophthalmic Suspension taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times P \times 100$$

r_U = peak response from the Sample solution

r_S = peak response from the Standard solution

C_S = concentration of [USP Dexamethasone RS](#) in the Standard solution (mg/mL)

C_U = nominal concentration of dexamethasone in the Sample solution (mg/mL)

P = potency of dexamethasone in [USP Dexamethasone RS](#) (mg/mg)

Acceptance criteria: 90.0%–110.0%

SPECIFIC TESTS

- [STERILITY TESTS \(71\)](#): It meets the requirements in [Test for Sterility of the Product to Be Examined, Membrane Filtration](#).
- [pH \(791\)](#): 5.0–6.0

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Dexamethasone RS](#)

[USP Tobramycin RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TOBRAMYCIN AND DEXAMETHASONE OPHTHALMIC SUSPENSION	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 49(1)

Current DocID: [GUID-C47F25E6-4415-41AC-83C4-01A1E71578F8_2_en-US](#)

Previous DocID: [GUID-C47F25E6-4415-41AC-83C4-01A1E71578F8_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M83769_02_01

DOI ref: [14iss](#)