

Status: Currently Official on 17-Feb-2025
 Official Date: Official as of 01-Aug-2017
 Document Type: USP Monographs
 DocId: GUID-51C3E693-9D76-4603-A77C-511E1BACBE62_1_en-US
 DOI: https://doi.org/10.31003/USPNF_M83744_01_01
 DOI Ref: 859ra

© 2025 USPC
 Do not distribute

Tizanidine Tablets

DEFINITION

Tizanidine Tablets contain Tizanidine Hydrochloride equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of tizanidine ($C_9H_8ClN_5S$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- **B.** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Solution A: [Water](#) and [phosphoric acid](#) (44:6)

Buffer: 3.5 g/L of [sodium 1-pentanesulfonate](#). Adjust with *Solution A* or [1 N sodium hydroxide](#) to a pH of 3.0.

Mobile phase: [Acetonitrile](#) and *Buffer* (20:80)

Tizanidine related compound A solution: 0.1 mg/mL of [USP Tizanidine Related Compound A RS](#) in [methanol](#)

Tizanidine related compound B solution: 0.1 mg/mL of [USP Tizanidine Related Compound B RS](#) in [methanol](#)

Tizanidine related compound C solution: 0.1 mg/mL of [USP Tizanidine Related Compound C RS](#) in [methanol](#)

System suitability solution: Transfer 23 mg of [USP Tizanidine Hydrochloride RS](#) to a 100-mL volumetric flask, and add 20 mL of *Mobile phase* and 10 mL each of *Tizanidine related compound A solution*, *Tizanidine related compound B solution*, and *Tizanidine related compound C solution*. Sonicate to dissolve the [USP Tizanidine Hydrochloride RS](#), and dilute with *Mobile phase* to volume.

Standard solution: 0.046 mg/mL of [USP Tizanidine Hydrochloride RS](#) in *Mobile phase*

Sample solution: Transfer a weighed portion of finely powdered Tablets (NLT 20), equivalent to 20 mg of tizanidine, to a 500-mL volumetric flask. Add 250 mL of *Buffer* solution, sonicate for 15 min with occasional shaking, and shake by mechanical means for 15 min. Add 100 mL of [acetonitrile](#), and mix. Allow to cool, and dilute with *Buffer* solution to volume. Centrifuge a portion of this solution at 2000 rpm or higher for 10 min. Pass a portion of this solution through a filter with a 0.45- μ m or finer pore size, and use the filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm. For *Identification B*, use a diode array detector in the range of 210–400 nm.

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Column temperature: 50°

Flow rate: 1 mL/min

Injection volume: 10 μ L

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The relative retention times are listed in [Table 1](#).]

Suitability requirements

Resolution: NLT 4.0 between tizanidine and tizanidine related compound C; NLT 4.0 between tizanidine and tizanidine related compound B, *System suitability solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of tizanidine ($C_9H_8ClN_5S$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

- r_u = peak response from the *Sample solution*
- r_s = peak response from the *Standard solution*
- C_s = concentration of [USP Tizanidine Hydrochloride RS](#) in the *Standard solution* (mg/mL)
- C_u = nominal concentration of tizanidine in the *Sample solution* (mg/mL)
- M_{r1} = molecular weight of tizanidine, 253.71
- M_{r2} = molecular weight of tizanidine hydrochloride, 290.17

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- [Dissolution \(711\)](#).

Test 1

Medium: [0.1 N hydrochloric acid](#); 500 mL

Apparatus 1: 100 rpm

Time: 15 min

Solution A, Buffer, and Mobile phase: Prepare as directed in the Assay.

Standard solution: ($L/500$) mg/mL of [USP Tizanidine Hydrochloride RS](#) in *Medium*, where L is the label claim, in mg

Sample solution: Sample per [Dissolution \(711\)](#). Dilute with *Medium* to a concentration that is similar to the *Standard solution*.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Column temperature: 50°

Flow rate: 1 mL/min

Injection volume: 20 μ L

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of tizanidine ($C_9H_8ClN_5S$) dissolved:

$$\text{Result} = (r_u/r_s) \times C_s \times V \times (1/L) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of tizanidine from the *Sample solution*

r_s = peak response of tizanidine from the *Standard solution*

C_s = concentration of [USP Tizanidine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

V = volume of dissolution *Medium*, 500 mL

L = label claim, in mg

M_{r1} = molecular weight of tizanidine, 253.71

M_{r2} = molecular weight of tizanidine hydrochloride, 290.17

Tolerances: NLT 80% (Q) of the labeled amount of tizanidine ($C_9H_8ClN_5S$) is dissolved.

Test 2

[NOTE—If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.]

Medium: [0.1 N hydrochloric acid](#); 500 mL, deaerated

Apparatus 1: 100 rpm**Time:** 30 min**Standard solution:** ($L/500$) mg/mL of [USP Tizanidine Hydrochloride RS](#) in *Medium*, where L is the label claim, in mg**Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45- μm pore size.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** 228 nm**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of tizanidine ($\text{C}_9\text{H}_8\text{ClN}_5\text{S}$) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times V \times (1/L) \times (M_{r1}/M_{r2}) \times 100$$

 A_U = absorbance of the *Sample solution* A_S = absorbance of the *Standard solution* C_S = concentration of [USP Tizanidine Hydrochloride RS](#) in the *Standard solution* (mg/mL) V = volume of dissolution *Medium*, 500 mL L = label claim, in mg M_{r1} = molecular weight of tizanidine, 253.71 M_{r2} = molecular weight of tizanidine hydrochloride, 290.17**Tolerances:** NLT 80% (Q) of the labeled amount of tizanidine ($\text{C}_9\text{H}_8\text{ClN}_5\text{S}$) is dissolved.**IMPURITIES**• **ORGANIC IMPURITIES****Solution A, Buffer, Mobile phase, System suitability solution, Standard solution, Chromatographic system, and System suitability:** Proceed as directed in the Assay.**Sample solution:** Transfer a weighed portion of finely powdered Tablets (NLT 20), equivalent to 20 mg of tizanidine, to a 100-mL volumetric flask. Add about 50 mL of *Buffer* solution, sonicate for about 15 min with occasional shaking, and shake by mechanical means for 15 min. Add 20 mL of [acetonitrile](#), and mix. Allow to cool, dilute with *Buffer* solution to volume, and mix. Centrifuge a portion of this solution at 2000 rpm or higher for 10 min. Pass a portion of this solution through a filter with a 0.45- μm or finer pore size, and use the filtrate.**Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times (1/F) \times 100$$

 r_U = peak response of each impurity from the *Sample solution* r_S = peak response of tizanidine from the *Standard solution* C_S = concentration of [USP Tizanidine Hydrochloride RS](#) in the *Standard solution* (mg/mL) C_U = nominal concentration of tizanidine in the *Sample solution* (mg/mL) M_{r1} = molecular weight of tizanidine, 253.71 M_{r2} = molecular weight of tizanidine hydrochloride, 290.17 F = relative response factor (see [Table 1](#))**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Tizanidine related compound C ^a	0.8	—	—
Tizanidine	1.0	—	—
Tizanidine related compound B ^a	1.4	—	—
Tizanidine related compound A	10.2	1.1	0.2
Any unspecified degradation product	—	1.0	0.2
Total impurities	—	—	0.5

^a Process impurity included for peak identification purposes only. Controlled in the drug substance.

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in tight containers, and store at controlled room temperature.
- LABELING:** When more than one *Dissolution* test is given, the labeling states the test used only if *Test 1* is not used.

• USP REFERENCE STANDARDS (11).

[USP Tizanidine Hydrochloride RS](#)

[USP Tizanidine Related Compound A RS](#)

4-Amino-5-chloro-2,1,3-benzothiadiazole.

$C_6H_4ClN_3S$ 185.63

[USP Tizanidine Related Compound B RS](#)

N-Acetyl tizanidine.

$C_{11}H_{10}ClN_5OS$ 295.75

[USP Tizanidine Related Compound C RS](#)

1-Acetyl imidazolidine-2-thione.

$C_5H_8N_2OS$ 144.19

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TIZANIDINE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(2)

Current DocID: GUID-51C3E693-9D76-4603-A77C-511E1BACBE62_1_en-US

DOI: https://doi.org/10.31003/USPNF_M83744_01_01

DOI ref: [859ra](#)