


Status: Currently Official on 17-Feb-2025  
Official Date: Official as of 01-May-2020  
Document Type: USP Monographs  
DocId: GUID-2DF352A9-8F4D-40F2-B0A9-E3C0EFC66522\_4\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M83560\\_04\\_01](https://doi.org/10.31003/USPNF_M83560_04_01)  
DOI Ref: 202zz

© 2025 USPC  
Do not distribute

## Ticlopidine Hydrochloride



• HCl

$C_{14}H_{14}ClNS \cdot HCl$  300.25

Thieno[3,2-c]pyridine, 5-[(2-chlorophenyl)methyl]-4,5,6,7-tetrahydro-, hydrochloride;  
5-(o-Chlorobenzyl)-4,5,6,7-tetrahydrothieno-[3,2-c]pyridine hydrochloride CAS RN®: 53885-35-1; UNII: A1L4914FMF.

### DEFINITION

Ticlopidine Hydrochloride contains NLT 98.0% and NMT 102.0% of  $C_{14}H_{14}ClNS \cdot HCl$ , calculated on the dried basis.

### IDENTIFICATION

*Change to read:*

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197M** ▲ (CN 1-MAY-2020)
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- C. **IDENTIFICATION TESTS—GENERAL, Chloride(191)**: Meets the requirements

### ASSAY

#### • PROCEDURE

**Buffer:** 1.1 g of monobasic sodium phosphate and 0.28 g of dibasic sodium phosphate in 1000 mL of water. The pH of solution is between 6.1 and 6.6. If necessary, adjust to the required pH using phosphoric acid or sodium hydroxide.

**Mobile phase:** Acetonitrile, methanol, and *Buffer* (6:7:7)

**System suitability solution:** 0.2 mg/mL of [USP Ticlopidine Hydrochloride RS](#) and 0.2 mg/mL of [USP Sulconazole Nitrate RS](#) in *Mobile phase*.

[**NOTE**—Sonication may be necessary for complete dissolution.]

**Standard solution:** 0.4 mg/mL of [USP Ticlopidine Hydrochloride RS](#) in *Mobile phase*

**Sample solution:** 0.4 mg/mL of Ticlopidine Hydrochloride in *Mobile phase*

**Chromatographic system**

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 215 nm

**Column:** 4.6-mm × 25-cm; 10-μm packing L7

**Flow rate:** 2 mL/min

**Column temperature:** 40°

**Run time:** 1.5 times the retention time of the ticlopidine peak

**Injection size:** 10 μL

**System suitability**

**Samples:** *System suitability solution* and *Standard solution*

**Suitability requirements**

**Resolution:** NLT 2.6 between ticlopidine hydrochloride and sulconazole nitrate, *System suitability solution*

**Relative standard deviation:** NMT 1.0%, *Standard solution*

**Analysis**

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of  $C_{14}H_{14}ClNS \cdot HCl$  in the portion of Ticlopidine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

$r_u$  = peak response of ticlopidine from the *Sample solution*

$r_s$  = peak response of ticlopidine from the *Standard solution*

$C_s$  = concentration of ticlopidine in the *Standard solution*

$C_u$  = concentration of ticlopidine in the *Sample solution*

**Acceptance criteria:** 98.0%–102.0% on the dried basis

## IMPURITIES

### INORGANIC IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1% on a 1-g sample

### ORGANIC IMPURITIES

- **PROCEDURE 1**

**Adsorbent:** 0.25-mm thickness of silica

**Developing solvent:** Butanol, water, and glacial acetic acid (4:5:1). Shake well in a separatory funnel, allow it to settle, discard the lower aqueous layer, and use the upper organic layer.

**Diluent:** Methylene chloride and methanol (1:2)

**Iodine–methanol reagent:** Iodine TS and methanol (1:1)

**Standard solution A:** 15 mg/mL of [USP Ticlopidine Hydrochloride RS](#) in *Diluent*

**Standard solution B:** 2.5 mg/mL of each of [USP Ticlopidine Related Compound A RS](#) and [USP Ticlopidine Related Compound B RS](#) in *Diluent*

**Sample solution:** 15 mg/mL of Ticlopidine Hydrochloride in *Diluent*

**Combined standard solution:** Transfer 1.5 mL of *Standard solution B* and 250  $\mu$ L of the *Sample solution* to a 25-mL volumetric flask and dilute to volume with *Diluent*.

**Application size:** 2, 5, and 10  $\mu$ L of the *Combined standard solution* and 20  $\mu$ L of the *Sample solution*

### Analysis

**Samples:** *Sample solution* and *Combined standard solution*

Develop the plate to a distance of at least 15 cm from the origin, and remove the plate and air dry for at least 1 h. Analyze visually under UV light. Estimate the amounts of ticlopidine related compound A and ticlopidine related compound B. Spray the plate with the *Iodine–methanol reagent*, and estimate any other impurities by comparing to the ticlopidine hydrochloride spots in the *Combined standard solution*.

### Acceptance criteria

**Individual impurities:** See [Impurity Table 1](#).

**Impurity Table 1**

| Name                                                      | Retardation Factor ( $R_f$ ) | Acceptance Criteria, NMT (%) |
|-----------------------------------------------------------|------------------------------|------------------------------|
| Ticlopidine hydrochloride                                 | 1.00                         | —                            |
| Ticlopidine hydrochloride related compound A <sup>a</sup> | 1.26                         | 0.5                          |
| Ticlopidine hydrochloride related compound B <sup>b</sup> | 1.41                         | 0.5                          |

<sup>a</sup> (4-Oxo-4,5,6,7-tetrahydrothieno-[3,2-c]pyridine).

<sup>b</sup> (5-(2-Chlorobenzyl)-4-oxo-4,5,6,7-tetrahydrothieno-[3,2-c]pyridine).

- **PROCEDURE 2**

**Buffer, Mobile phase, System suitability solution, Standard solution, Sample solution, and Chromatographic system:** Proceed as directed in the Assay.

### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of *N*-methyl ticlopidine in the portion of Ticlopidine Hydrochloride taken:

$$\text{Result} = (r_u/r_T) \times 100$$

$r_u$  = peak response of *N*-methyl ticlopidine in the *Sample solution*

$r_T$  = sum of all the peak responses from in the *Sample solution*

Calculate the percentage of any individual impurity in the portion of the Ticlopidine Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times 100$$

$r_u$  = peak response of any impurity in the *Sample solution*

$r_s$  = peak response of ticlopidine in the *Standard solution*

#### Acceptance criteria

**Individual impurities:** See [Impurity Table 2](#).

**Total impurities:** See [Impurity Table 2](#).

**Impurity Table 2**

| Name                                      | Relative Retention Time | Acceptance Criteria, NMT (%) |
|-------------------------------------------|-------------------------|------------------------------|
| Ticlopidine hydrochloride                 | 1                       | —                            |
| <i>N</i> -Methyl ticlopidine <sup>a</sup> | 1.18                    | 0.5                          |
| Any other individual impurity             | —                       | 0.10                         |
| Total impurities <sup>b</sup>             | —                       | 1.0                          |

<sup>a</sup> 2-[*N*-Methyl-*N*-(2-chlorobenzyl)aminoethyl] thiophene hydrochloride.

<sup>b</sup> Total of *N*-methyl ticlopidine and sum of % individual impurities from *Procedure 1*.

#### SPECIFIC TESTS

• **Loss on Drying (731):** Dry a 1.0-g sample at 80° for 5 h: it loses NMT 1.0% of its weight.

• **LIMIT OF FORMALDEHYDE**

**Mobile phase:** Acetonitrile, water, and hydrochloric acid (3:2:0.004)

**2,4 Dinitrophenyl hydrazine solution:** 1.65 mg/mL of 2,4-dinitrophenylhydrazine in acetonitrile

**Standard stock solution:** Transfer a known amount of formaldehyde solution, equivalent to 37 mg of formaldehyde, into a 100-mL volumetric flask. Dilute with methanol to volume.

**Standard solution:** Dilute the *Standard stock solution* with methanol to prepare a 1.85- $\mu$ g/mL solution.

**Sample solution:** 0.50 g of Ticlopidine Hydrochloride in 10 mL methanol (sonication may be necessary for complete dissolution)

**Derivatized standard and sample solutions:** Transfer 2.0 mL of *2,4-Dinitrophenyl hydrazine solution* to five different 10-mL volumetric flasks:

50  $\mu$ L of 2 N hydrochloric acid and 150, 250, and 500  $\mu$ L of the *Standard solution* to the first three flasks; 500  $\mu$ L of the *Sample solution* to the fourth; and 500  $\mu$ L of methanol to the fifth flask. Mix each solution well and allow the solutions to react for at least 30 min at ambient temperature. Dilute each flask with *Mobile phase* to volume and mix well. The solutions should be analyzed within 4 h.

#### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 365 nm

**Column:** 4.6-mm  $\times$  15-cm; 5- $\mu$ m packing L1

**Flow rate:** 1 mL/min

**Injection size:** 20  $\mu$ L

#### System suitability

**Sample:** *Derivatized standard solution* prepared from 500  $\mu$ L

**Suitability requirements****Relative standard deviation:** NMT 10.0%**Analysis****Samples:** Derivatized standard solutions and Derivatized sample solution

[NOTE—The approximate retention time for 2,4 dinitrophenylhydrazine is about 3.5 min and for the formaldehyde and 2,4 dinitrophenylhydrazine derivative is about 3.8 min.]

Calculate the formaldehyde concentration in ppm in the *Derivatized sample solution* as the concentration in the Ticlopidine Hydrochloride taken:

$$\text{Result} = (C \times D)/W$$

C = concentration of formaldehyde from the calibration curve generated from the peak areas of the derivatized methanol and the three *Derivatized standard solutions* (μg/mL)

D = dilution factor, 200

W = sample weight (g)

**Acceptance criteria****Formaldehyde:** NMT 20 ppm**ADDITIONAL REQUIREMENTS**• **PACKAGING AND STORAGE:** Preserve in tight containers, and store at a temperature below 30°.• **USP Reference Standards (11)**[USP Sulconazole Nitrate RS](#)[USP Ticlopidine Hydrochloride RS](#)[USP Ticlopidine Hydrochloride Related Compound A RS](#)

4-Oxo-4,5,6,7-tetrahydrothieno[3,2-c]pyridine.

[USP Ticlopidine Hydrochloride Related Compound B RS](#)

5-(2-Chlorobenzyl)-4-oxo-4,5,6,7-tetrahydrothieno[3,2-c]pyridine.

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee          |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|
| TICLOPIDINE HYDROCHLORIDE  | <a href="#">Documentary Standards Support</a>                               | SM22020 Small Molecules 2 |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM22020 Small Molecules 2 |

**Chromatographic Database Information:** [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 35(3)

**Current DocID: GUID-2DF352A9-8F4D-40F2-B0A9-E3C0EFC66522\_4\_en-US****DOI:** [https://doi.org/10.31003/USPNF\\_M83560\\_04\\_01](https://doi.org/10.31003/USPNF_M83560_04_01)**DOI ref:** [202zz](#)