

Status: Currently Official on 17-Feb-2025
Official Date: Official as of 01-Dec-2021
Document Type: USP Monographs
DocId: GUID-0B521B01-51DD-4FDA-BAA2-EAC835BE511D_3_en-US
DOI: https://doi.org/10.31003/USPNF_M82810_03_01
DOI Ref: a2tdv

© 2025 USPC
Do not distribute

Thioguanine

Change to read:

$C_5H_5N_5S$ ▲ (USP 1-Dec-2021) (anhydrous) 167.19

$C_5H_5N_5S \cdot \frac{1}{2}H_2O$ 176.20

6H-Purine-6-thione, 2-amino-1,7-dihydro-;

2-Aminopurine-6(1H)-thione CAS RN®: 154-42-7; UNII: WIX31ZPX66.

Hemihydrate CAS RN®: 5580-03-0; UNII: FTK8U1GZNX.

DEFINITION

Thioguanine is anhydrous or contains one-half molecule of water of hydration. It contains NLT 96.0% and NMT 100.5% of thioguanine ($C_5H_5N_5S$), calculated on the dried basis.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197K
- B. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Ultraviolet-Visible Spectroscopy](#): 197U

Sample solution: Transfer 100 mg of Thioguanine, previously dried, to a 100-mL volumetric flask. Dissolve in a mixture of 15 mL of water and 1.5 mL of 1 N sodium hydroxide, dilute with water to volume, and mix. Transfer 10.0 mL of this solution to a second 100-mL volumetric flask, add 1% hydrochloric acid to volume, and mix. Finally, transfer 5.0 mL of the last solution to a third 100-mL volumetric flask, then add 1% hydrochloric acid to volume, and mix.

Acceptance criteria: The UV absorption spectrum of the *Sample solution* exhibits maxima and minima at the same wavelengths as that of a similar solution of [USP Thioguanine RS](#).

ASSAY

• PROCEDURE

Phosphoric acid solution: Add 1 mL of phosphoric acid to 99 mL of water.

Mobile phase: 0.05 M monobasic sodium phosphate. Adjust with phosphoric acid to a pH of 3.0.

Standard stock solution: 0.4 mg/mL of [USP Thioguanine RS](#) in 0.01 N sodium hydroxide

Standard solution: 0.04 mg/mL of [USP Thioguanine RS](#) in *Phosphoric acid solution* from *Standard stock solution*

Sample stock solution: 0.4 mg/mL of Thioguanine in 0.01 N sodium hydroxide

Sample solution: 0.04 mg/mL of Thioguanine in *Phosphoric acid solution* from *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 248 nm

Column: 4.6-mm × 5-cm; packing [L1](#)

Flow rate: 2.0 mL/min

Injection volume: 10 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of thioguanine ($C_5H_5N_5S$) in the portion of Thioguanine taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of thioguanine from the Sample solution

r_S = peak response of thioguanine from the Standard solution

C_S = concentration of [USP Thioguanine RS](#) in the Standard solution (mg/mL)

C_U = concentration of Thioguanine in the Sample solution (mg/mL)

Acceptance criteria: 96.0%–100.5% on the dried basis

OTHER COMPONENTS**• [NITROGEN DETERMINATION \(461\), Method II](#)**

Sample: 100 mg

Analysis: Each milliliter of 0.1 N sulfuric acid is equivalent to 1.401 mg of nitrogen (N).

Acceptance criteria: 40.2%–43.1% on the dried basis

IMPURITIES

Delete the following:

▲. [SELENIUM \(291\)](#)

Sample: 200 mg

Acceptance criteria: NMT 30 ppm▲ (USP 1-Dec-2021)

• [FREE SULFUR](#)

Sample solution: Dissolve 50 mg of Thioguanine in 5 mL of 1 N sodium hydroxide.

Acceptance criteria: The Sample solution is clear.

• [PHOSPHOROUS-CONTAINING SUBSTANCES](#)

Solution A: Dissolve 8.3 g of ammonium molybdate in 40 mL of water, add 33 mL of dilute sulfuric acid (2 in 7), and dilute with water to 100.0 mL. [NOTE—This solution is stable for about 2 weeks.]

Instrumental conditions

Mode: UV-Vis

Cell: 1 cm

Analytical wavelength: 620 nm

Analysis: Transfer 50.0 mg of Thioguanine to a large test tube, add 1 mL of dilute sulfuric acid (2 in 7), and heat in a boiling water bath for 5 min. Cautiously add nitric acid, dropwise, continue heating until the mixture becomes colorless, and then heat for 1 min longer. Cool, dilute with water to about 10 mL, and transfer the solution to a 25-mL volumetric flask with the aid of a few milliliters of water. To the flask add 0.75 mL of *Solution A* and 1.0 mL of aminonaphtholsulfonic acid TS, dilute with water to volume, and mix.

Acceptance criteria: NMT 0.03% as phosphate; the absorbance is not greater than that produced by 1.5 mL of a similar solution of monobasic potassium phosphate in water having a known concentration of 10 μ g/mL of phosphate (PO_4^{3-}), concomitantly measured.

Change to read:

• [ORGANIC IMPURITIES](#)

Mobile phase, Sample stock solution, and Chromatographic system: Proceed as directed in the Assay.

Standard stock solution: 0.04 mg/mL of [USP Guanine RS](#) in 0.01 N sodium hydroxide

Standard solution: 0.4 μ g/mL of [USP Guanine RS](#) in Mobile phase from Standard stock solution

Sample solution: 0.04 mg/mL of Thioguanine in Mobile phase from Sample stock solution

System suitability solution: Transfer 1.0 mL of Standard stock solution into a 100-mL volumetric flask, and dilute with the Sample solution to volume.

System suitability

Samples: Standard solution and System suitability solution

[NOTE—The relative retention times for guanine and thioguanine are about 0.60 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 3.0 between guanine and thioguanine, System suitability solution

Tailing factor: NMT 2.0, Standard solution

Relative standard deviation: NMT 5.0%, Standard solution

Analysis**Samples:** Standard solution and Sample solution

Calculate the percentage of guanine in the portion of Thioguanine taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of guanine from the Sample solution r_S = peak response of guanine from the Standard solution C_S = concentration of [▲USP Guanine RS▲](#) (USP 1-Dec-2021) in the Standard solution (mg/mL) C_U = concentration of Thioguanine in the Sample solution (mg/mL)**Acceptance criteria:** NMT 2.5%**SPECIFIC TESTS**

- [Loss on Drying \(731\)](#).

Analysis: Dry under vacuum at 105° for 5 h.**Acceptance criteria:** NMT 6.0%**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in tight containers.

- **LABELING:** Label it to indicate its state of hydration.

- [USP Reference Standards \(11\)](#).

[USP Guanine RS](#)[USP Thioguanine RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
THIOGUANINE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 46(4)

Current DocID: [GUID-0B521B01-51DD-4FDA-BAA2-EAC835BE511D_3_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M82810_03_01**DOI ref:** [a2tdv](#)