

Status: Currently Official on 17-Feb-2025  
Official Date: Official as of 01-May-2020  
Document Type: USP Monographs  
DocId: GUID-B24FBC41-4CB6-4B4B-A90D-10527D9A47A1\_2\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M82840\\_02\\_01](https://doi.org/10.31003/USPNF_M82840_02_01)  
DOI Ref: 5th9a

© 2025 USPC  
Do not distribute

## Thioguanine Tablets

### DEFINITION

Thioguanine Tablets contain NLT 93.0% and NMT 107.0% of the labeled amount of thioguanine ( $C_5H_5N_5S$ ).

### IDENTIFICATION

*Change to read:*

- A. **▲SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K** ▲ (CN 1-MAY-2020) Record the spectra over the range from 3000  $cm^{-1}$  to 650  $cm^{-1}$ .

**Sample:** Shake a portion of the powdered Tablets equivalent to 0.5 g of thioguanine with 10 mL of 1 M sodium hydroxide, and filter. Acidify the filtrate with hydrochloric acid, filter, and dissolve the precipitate in 25% ammonia water. Evaporate to dryness, and dry the residue at 105° at a pressure not exceeding 0.1 psi for 5 h.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

### ASSAY

#### • PROCEDURE

**Mobile phase:** 6 g/L of anhydrous monobasic sodium phosphate in water adjusted with phosphoric acid to a pH of 3.0

**Diluent:** 0.01 M sodium hydroxide

**Standard stock solution:** 0.4 mg/mL of [USP Thioguanine RS](#) in *Diluent*

**Standard solution:** 0.04 mg/mL of [USP Thioguanine RS](#) in *Mobile phase* from the *Standard stock solution*

**Sample stock solution:** Nominally 0.4 mg/mL of thioguanine in *Diluent* prepared as follows. Transfer NLT 20 finely powdered Tablets, equivalent to 40 mg of thioguanine, to a 100-mL volumetric flask. Add 70 mL of *Diluent*, and shake for 15 min. Dilute with *Diluent* to volume.

**Sample solution:** 0.04 mg/mL of thioguanine in *Mobile phase* from the *Sample stock solution*. Pass a portion of this solution through a suitable filter.

#### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 248 nm

**Column:** 4.6-mm × 5-cm; 5- $\mu$ m packing L1

**Flow rate:** 2 mL/min

**Injection volume:** 10  $\mu$ L

#### System suitability

**Sample:** *Standard solution*

#### Suitability requirements

**Tailing factor:** NMT 2.0

**Relative standard deviation:** NMT 2.0%

#### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of thioguanine ( $C_5H_5N_5S$ ) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

$r_U$  = peak response from the *Sample solution*

$r_S$  = peak response from the *Standard solution*

$C_S$  = concentration of thioguanine in the *Standard solution* (mg/mL)

$C_U$  = nominal concentration of thioguanine in the *Sample solution* (mg/mL)

**Acceptance criteria:** 93.0%–107.0%

#### PERFORMANCE TESTS

- **DISSOLUTION (711)**

**Medium:** Water; 900 mL

**Apparatus 2:** 50 rpm

**Time:** 45 min

**Sample solution:** Pass a portion of the solution under test through a suitable filter. Transfer 2 mL of the filtrate and 2 mL of 1 M hydrochloric acid to a 20-mL volumetric flask, and dilute with water to volume.

**Standard solution:** [USP Thioguanine RS](#) in 0.1 M hydrochloric acid with a concentration similar to the *Sample solution*

#### Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

**Mode:** UV

**Analytical wavelength:** 348 nm

**Blank:** 0.1 M hydrochloric acid

#### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of thioguanine ( $C_5H_5N_5S$ ) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times V \times D \times (1/L) \times 100$$

$A_U$  = absorbance of the *Sample solution*

$A_S$  = absorbance of the *Standard solution*

$C_S$  = concentration of the *Standard solution* (mg/mL)

$V$  = volume of the *Medium*, 900 mL

$D$  = dilution factor for *Sample solution*, 10

$L$  = label claim (mg/Tablet)

**Tolerances:** NLT 75% ( $Q$ ) of the labeled amount of thioguanine ( $C_5H_5N_5S$ ) is dissolved.

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

#### IMPURITIES

- **ORGANIC IMPURITIES**

**Mobile phase and Chromatographic system:** Proceed as directed in the Assay.

**Diluent:** 0.01 M sodium hydroxide

**System suitability stock solution:** 0.4 mg/mL each of [USP Thioguanine RS](#) and [USP Guanine RS](#) in 10% (v/v) phosphoric acid. Sonicate to dissolve.

**System suitability solution:** 0.04 mg/mL each of [USP Thioguanine RS](#) and [USP Guanine RS](#) in *Mobile phase* from the *System suitability stock solution*

**Standard stock solution:** 8 µg/mL of [USP Thioguanine RS](#) and 0.16 mg/mL of [USP Guanine RS](#) in *Diluent*

**Standard solution:** 0.8 µg/mL of [USP Thioguanine RS](#) and 0.016 mg/mL of [USP Guanine RS](#) in *Mobile phase* from the *Standard stock solution*

**Sample solution:** Nominally 0.4 mg/mL of thioguanine prepared as follows. Transfer NLT 20 finely powdered Tablets, equivalent to 40 mg of thioguanine, to a 100-mL volumetric flask. Add 10 mL of *Diluent*, and sonicate for 5 min. Dilute with *Mobile phase* to volume. Pass a portion of this solution through a suitable filter.

#### System suitability

**Sample:** *System suitability solution*

#### Suitability requirements

**Resolution:** NLT 3.0 between the thioguanine and guanine peaks, *System suitability solution*

#### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of guanine in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

$r_u$  = peak response from the *Sample solution*

$r_s$  = peak response from the *Standard solution*

$C_s$  = concentration of [USP Guanine RS](#) in the *Standard solution* (mg/mL)

$C_u$  = nominal concentration of thioguanine in the *Sample solution* (mg/mL)

Calculate the percentage of any individual unspecified impurity in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

$r_u$  = peak response of each unspecified impurity from the *Sample solution*

$r_s$  = peak response of thioguanine from the *Standard solution*

$C_s$  = concentration of [USP Thioguanine RS](#) in the *Standard solution* (mg/mL)

$C_u$  = nominal concentration of thioguanine in the *Sample solution* (mg/mL)

**Acceptance criteria:** See [Table 1](#). Disregard any impurity peak less than 0.1%.

**Table 1**

| Name                                | Relative Retention Time | Acceptance Criteria, NMT (%) |
|-------------------------------------|-------------------------|------------------------------|
| Guanine <sup>a</sup>                | 0.5                     | 4                            |
| Thioguanine                         | 1.0                     | —                            |
| Any individual unspecified impurity | —                       | 0.2                          |
| Total impurities                    | —                       | 4.5                          |

<sup>a</sup> 2-Amino-1,7-dihydro-6*H*-purin-6-one.

#### ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in tight containers. Store at 15°–25°.

• [USP REFERENCE STANDARDS \(11\)](#)

[USP Guanine RS](#)

2-Amino-1,7-dihydro-6*H*-purin-6-one.

$C_5H_5N_5O$  151.13

[USP Thioguanine RS](#)

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee          |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|
| THIOGUANINE TABLETS        | <a href="#">Documentary Standards Support</a>                               | SM32020 Small Molecules 3 |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM32020 Small Molecules 3 |

**Chromatographic Database Information:** [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 38(6)

Current DocID: **GUID-B24FBC41-4CB6-4B4B-A90D-10527D9A47A1\_2\_en-US**

DOI: [https://doi.org/10.31003/USPNF\\_M82840\\_02\\_01](https://doi.org/10.31003/USPNF_M82840_02_01)

DOI ref: [5th9a](#)

OFFICIAL