

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-57D8D35F-C692-49F8-A57D-4607427930BF_2_en-US
DOI: https://doi.org/10.31003/USPNF_M82750_02_01
DOI Ref: eu557

© 2025 USPC
Do not distribute

Thimerosal

$C_9H_9HgNaO_2S$ 404.81

Mercury, ethyl(2-mercaptopbenzoato-S), sodium salt;
Ethyl (sodium o-mercaptopbenzoato)mercury CAS RN®: 54-64-8.

DEFINITION

Thimerosal contains NLT 97.0% and NMT 102.0% of thimerosal ($C_9H_9HgNaO_2S$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. **▲ SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K** ▲ (CN 1-MAY-2020)

- B.

Sample solution: 10 mg/mL

Analysis: To the *Sample solution* add a few drops of silver nitrate TS.

Acceptance criteria: A pale yellow precipitate is formed.

- C. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

• PROCEDURE

Solution A: 0.05% Trifluoroacetic acid, prepared by adding 1.0 mL of trifluoroacetic acid to 2 L of water

Mobile phase: Methanol and *Solution A* (60:40)

Standard stock solution: 250 µg/mL of [USP Thimerosal RS](#) in water

Impurity stock solution: 250 µg/mL of [USP Thimerosal Related Compound A RS](#) in methanol and water (90:10)

System suitability solution: 25 µg/mL each of [USP Thimerosal RS](#) and [USP Thimerosal Related Compound A RS](#) from *Standard stock solution* and *Impurity stock solution*, respectively, in water

Standard solution: 25 µg/mL of [USP Thimerosal RS](#) in water from *Standard stock solution*

Sample solution: 25 µg/mL of Thimerosal in water

[**NOTE**—Prepare both the *Standard solution* and *Sample solution* at a concentration of NMT $\pm 10\%$ of the specified concentration.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 222 nm

Column: 2.1-mm \times 10-cm; 2-µm packing L1

Autosampler temperature: 4°

Flow rate: 0.35 mL/min

Injection volume: 2.5 µL

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The relative retention times of thimerosal and thimerosal related compound A are 1.0 and 1.3, respectively.]

Suitability requirements

Resolution: NLT 3.5 between the thimerosal and thimerosal related compound A peaks, *System suitability solution*

Tailing factor: NMT 1.5, *Standard solution*

Relative standard deviation: NMT 0.73%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of thimerosal ($C_9H_9HgNaO_2S$) in the portion of Thimerosal taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Thimerosal RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_U = concentration of Thimerosal in the *Sample solution* ($\mu\text{g/mL}$)

Acceptance criteria: 97.0%–102.0% on the dried basis

IMPURITIES

• MERCURY IONS

Iodide reagent: 332 mg/mL of potassium iodide. Prepare fresh daily. Keep the stopper in the flask, and protect from light.

Standard solution: 95 $\mu\text{g/mL}$ of mercuric chloride

Sample stock solution: 5 mg/mL of Thimerosal

Sample solution A: 1 mg/mL of Thimerosal from *Sample stock solution*

Sample solution B: 1 mg/mL of Thimerosal from *Sample stock solution* and 9.5 $\mu\text{g/mL}$ of mercuric chloride from *Standard solution*

Instrumental conditions

Mode: UV

Analytical wavelength: Determine the wavelength of maximum absorbance for the tetraiodomercurate ion at about 323 nm using the solution prepared by mixing 1.0 mL of the *Standard solution* and 5.0 mL of the *Iodide reagent*, and diluting with water to 10.0 mL.

Cell: 1 cm

Blank: Water

Analysis

Protect all solutions from light before determining their absorbances.

Samples: Label five 10-mL volumetric flasks C, D, E, F, and R. Transfer 5.0 mL of *Sample solution A* to flasks C and D, 5.0 mL of *Sample solution B* to flasks E and F, and 5.0 mL of water to flask R. Dilute flasks C and E with water to volume. Dilute flasks D, F, and R with *Iodide reagent* to volume.

Determine the absorbances of the solutions in flasks C, D, E, F, and R as A_C , A_D , A_E , A_F , and A_R , respectively.

Calculate the percentage of mercury ions in the portion of Thimerosal taken:

$$\text{Result} = (A_U/A_S) \times (C_S/C_U) \times (A_r/M_r) \times 100$$

A_U = absorbance of the *Sample solution* obtained by: $A_U = A_D - A_R - A_C$

A_S = absorbance of the *Standard solution* obtained by: $A_S = A_F - A_R - A_E - A_U$

C_S = concentration of mercuric chloride in *Sample solution B* (mg/mL)

C_U = concentration of Thimerosal in *Sample solution B* (mg/mL)

A_r = atomic weight of mercury, 200.59

M_r = molecular weight of mercuric chloride, 271.50

Acceptance criteria: NMT 0.70%

• ORGANIC IMPURITIES

Solution A: 0.05% Trifluoroacetic acid, prepared by adding 1.0 mL of trifluoroacetic acid to 2 L of water

Mobile phase: Methanol and *Solution A* (60:40)

Stock solution 1: 250 $\mu\text{g/mL}$ of [USP Thimerosal RS](#) in water

Stock solution 2: 250 $\mu\text{g/mL}$ of [USP Thimerosal Related Compound A RS](#) in methanol and water (90:10)

System suitability solution: 25 $\mu\text{g/mL}$ each of [USP Thimerosal RS](#) and [USP Thimerosal Related Compound A RS](#) from *Stock solution 1* and *Stock solution 2*, respectively, in water

Standard solution: 0.25 µg/mL of [USP Thimerosal Related Compound A RS](#) from Stock solution 2 in water

Sample solution: 250 µg/mL of Thimerosal in water

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 222 nm

Column: 2.1-mm × 10-cm; 2-µm packing L1

Autosampler temperature: 4°

Flow rate: 0.35 mL/min

Injection volume: 2.5 µL

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 3.5 between the thimerosal and thimerosal related compound A peaks, *System suitability solution*

Relative standard deviation: NMT 3%, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of each impurity in the portion of Thimerosal taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of each impurity from the *Sample solution*

r_S = peak response of thimerosal related compound A from the *Standard solution*

C_S = concentration of [USP Thimerosal Related Compound A RS](#) in the *Standard solution* (µg/mL)

C_U = concentration of Thimerosal in the *Sample solution* (µg/mL)

Acceptance criteria: See [Table 1](#). Disregard peaks less than 0.05%.

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Thiosalicylic acid ^a	0.36	0.10
Thimerosal	1.0	—
Thimerosal related compound A	1.3	0.10
Any other individual unspecified impurity	—	0.10
Total impurities	—	1.0

^a 2-Sulfanylbenzoic acid.

SPECIFIC TESTS

- [Loss on Drying \(731\)](#).

Analysis: Dry to constant weight under vacuum over phosphorus pentoxide.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers.

- [USP Reference Standards \(11\)](#).

[USP Thimerosal RS](#)[USP Thimerosal Related Compound A RS](#)

2,2'-Disulfanediylidibenzoic acid.

 $C_{14}H_{10}O_4S_2$

306.35

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
THIMEROSAL	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 40(5)

Current DocID: GUID-57D8D35F-C692-49F8-A57D-4607427930BF_2_en-US**DOI: https://doi.org/10.31003/USPNF_M82750_02_01****DOI ref: [eu557](#)**

OFFICIAL