

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-04966E9D-10BC-44F4-88B2-4DF74CA6B722_2_en-US
DOI: https://doi.org/10.31003/USPNF_M82470_02_01
DOI Ref: 8js5j

© 2025 USPC
Do not distribute

Thiamine Hydrochloride

$C_{12}H_{17}ClN_4OS \cdot HCl$ 337.27

Thiazolium, 3-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-methyl-, chloride, monohydrate;

Thiamine monohydrochloride CAS RN®: 67-03-8; UNII: M572600E5P.

DEFINITION

Thiamine Hydrochloride contains NLT 98.0% and NMT 102.0% of thiamine hydrochloride ($C_{12}H_{17}ClN_4OS \cdot HCl$), calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#) ▲ (CN 1-MAY-2020)

Analysis: Dry specimens at 105° for 2 h.

Acceptance criteria: Meets the requirements

- B. [IDENTIFICATION TESTS—GENERAL, Chloride\(191\)](#): A 20-mg/mL solution meets the requirements.

ASSAY

• PROCEDURE

Solution A: 0.005 M sodium 1-octanesulfonate in dilute glacial acetic acid (1 in 100)

Solution B: Methanol and acetonitrile (3:2)

Mobile phase: *Solution B* and *Solution A* (40:60)

Internal standard solution: 2% (v/v) of methylbenzoate in methanol

Standard solution: Prepare a 1-mg/mL solution of [USP Thiamine Hydrochloride RS](#) in *Mobile phase*. Transfer 20.0 mL of this solution and 5.0 mL of *Internal standard solution* to a 50-mL volumetric flask, and dilute with *Mobile phase* to volume. The *Standard solution* contains 400 µg/mL of thiamine hydrochloride.

Sample solution: Prepare a 2-mg/mL of Thiamine Hydrochloride in *Mobile phase*. Transfer 10.0 mL of this solution and 5.0 mL of *Internal standard solution* to a 50-mL volumetric flask, and dilute with *Mobile phase* to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4-mm × 30-cm; packing L1

Flow rate: 1 mL/min

[NOTE—The flow rate may be adjusted as needed to obtain a retention time of about 12 min for thiamine hydrochloride.]

Injection size: 10 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Resolution: NLT 4.0 between the thiamine and methylbenzoate peaks

Tailing factor: NMT 2.0 for the thiamine peak

Column efficiency: NLT 1500 theoretical plates for the thiamine peak

Relative standard deviation: NMT 2.0% for the ratios of thiamine peak areas to the internal standard peak area

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of thiamine hydrochloride ($C_{12}H_{17}ClN_4OS \cdot HCl$) in the portion of Thiamine Hydrochloride taken:

$$\text{Result} = (R_u/R_s) \times (C_s/C_u) \times 100$$

R_U = internal standard ratio (peak area of thiamine/peak area of the internal standard) from the *Sample solution*

R_S = internal standard ratio (peak area of thiamine/peak area of the internal standard) from the *Standard solution*

C_S = concentration of [USP Thiamine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Thiamine Hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.2%

- [LIMIT OF NITRATE](#)

Sample solution: 20 mg/mL of Thiamine Hydrochloride

Analysis: To 2 mL of the *Sample solution* add 2 mL of sulfuric acid. Cool, and superimpose 2 mL of ferrous sulfate TS.

Acceptance criteria: No brown ring is produced at the junction of the two layers.

- [RELATED COMPOUNDS](#)

Solution A, Solution B, and Mobile phase: Proceed as directed in the Assay.

Sample solution: 1.0 mg/mL of Thiamine Hydrochloride in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.0-mm × 15-cm; packing L1

Flow rate: 0.75 mL/min

Injection size: 10 µL

Analysis

Sample: *Sample solution*

Allow the *Sample solution* to elute for NLT three times the retention time of the main peak.

Calculate the percentage of total secondary peaks in the portion of Thiamine Hydrochloride taken:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = sum of the areas of all the peaks, except that of the thiamine peak

r_T = sum of the areas of all the peaks

Acceptance criteria: NMT 1.0%

SPECIFIC TESTS

- [pH \(791\)](#)

Sample solution: 10-mg/mL solution

Acceptance criteria: 2.7–3.4

- [WATER DETERMINATION, Method I \(921\)](#): NMT 5.0%

- [ABSORBANCE OF SOLUTION](#)

Sample solution: 100 mg/mL in water. Filter through a fine-porosity, sintered-glass funnel.

Blank: Water

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV-Vis

Analytical wavelength: 400 nm

Cell: 1 cm

Analysis

Samples: *Sample solution* and *Blank*

Determine the absorbance of the *Sample solution* against that of the *Blank*.

Acceptance criteria: NMT 0.025

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE:](#) Preserve in tight, light-resistant containers.

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Thiamine Hydrochloride RS](#)

Topic/Question	Contact	Expert Committee
THIAMINE HYDROCHLORIDE	Natalia Davydova Scientific Liaison	NBDS2020 Non-botanical Dietary Supplements
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	NBDS2020 Non-botanical Dietary Supplements

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. Information currently unavailable

Current DocID: GUID-04966E9D-10BC-44F4-88B2-4DF74CA6B722_2_en-US

DOI: https://doi.org/10.31003/USPNF_M82470_02_01

DOI ref: 8js5j

OFFICIAL