

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2018
Document Type: USP Monographs
DocId: GUID-729E208C-57DC-4BFF-999D-DEC572DB5302_3_en-US
DOI: https://doi.org/10.31003/USPNF_M82210_03_01
DOI Ref: db8z8

© 2025 USPC
Do not distribute

Theophylline in Dextrose Injection

DEFINITION

Theophylline in Dextrose Injection is a sterile solution of Theophylline and Dextrose in Water for Injection. It contains NLT 93.0% and NMT 107.0% of the labeled amount of anhydrous theophylline ($C_7H_8N_4O_2$) and NLT 95.0% and NMT 105.0% of the labeled amount of dextrose ($C_6H_{12}O_6 \cdot H_2O$).

IDENTIFICATION

- A. The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.
- C.

Sample solution: Theophylline in Dextrose Injection

Analysis: Add a few drops of the *Sample solution* to 5 mL of hot [alkaline cupric tartrate TS](#).

Acceptance criteria: A red-to-orange precipitate of cuprous oxide is formed.

ASSAY

• THEOPHYLLINE

Solution A: 10 mM [ammonium acetate](#) prepared as follows. Transfer 771 mg of [ammonium acetate](#) to a 1-L volumetric flask, and dissolve in 80% of the flask volume of [water](#). Adjust with [glacial acetic acid](#) to a pH of 4.8 and dilute with [water](#) to volume. Pass through a suitable filter of 0.2- μ m pore size.

Solution B: Methanol

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	93.5	6.5
2.5	93.5	6.5
5.0	10	90
5.1	93.5	6.5
7.0	93.5	6.5

Standard solution: 0.1 mg/mL of [USP Theophylline RS](#)

Sample solution: Nominally 0.1 mg/mL of theophylline prepared as follows. Transfer 5 mg of theophylline from a volume of Injection to a 50-mL volumetric flask. Dissolve and dilute with [water](#) to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 270 nm. For *Identification A*, use a photodiode array detector in the range of 210–400 nm.

Column: 2.1-mm \times 10-cm; 1.7- μ m packing [L7](#)

Column temperature: 40°

Flow rate: 0.4 mL/min

Injection volume: 1 μ L**System suitability****Sample:** Standard solution**Suitability requirements****Tailing factor:** NMT 2.0**Relative standard deviation:** NMT 1.0%**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of theophylline ($C_7H_8N_4O_2$) in the portion of Injection taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of theophylline from the Sample solution r_s = peak response of theophylline from the Standard solution C_s = concentration of [USP Theophylline RS](#) in the Standard solution (mg/mL) C_u = nominal concentration of theophylline in the Sample solution (mg/mL)**Acceptance criteria:** 93.0%–107.0%• **DEXTROSE****Sample solution:** Nominally 2–5 g of dextrose per 100 mL, prepared as follows. Transfer a volume of Injection containing 2–5 g of dextrose to a 100-mL volumetric flask. Add 0.2 mL of [6 N ammonium hydroxide](#), and dilute with [water](#) to volume.**Analysis****Sample:** Sample solutionDetermine the angular rotation in a suitable polarimeter tube (see [Optical Rotation \(781\)](#)).Calculate the percentage of the labeled amount of dextrose ($C_6H_{12}O_6 \cdot H_2O$) in the portion of Injection taken:

$$\text{Result} = [(100 \times a)/(l \times \alpha)] \times (1/C_u) \times (M_{r1}/M_{r2}) \times 100$$

 a = observed angular rotation of the Sample solution (°) l = length of the polarimeter tube (dm) α = midpoint of the specific rotation range for anhydrous dextrose, 52.9° C_u = nominal concentration of dextrose in the Sample solution (g/100 mL) M_{r1} = molecular weight of dextrose monohydrate, 198.17 M_{r2} = molecular weight of anhydrous dextrose, 180.16**Acceptance criteria:** 95.0%–105.0%**IMPURITIES**• **ORGANIC IMPURITIES****Solution A, Solution B, and Mobile phase:** Prepare as directed in the Assay.**System suitability solution:** 0.4 μ g/mL each of [USP Theophylline Related Compound D RS](#) and 5-hydroxymethylfurfural**Standard solution:** 0.4 μ g/mL each of [USP Theophylline RS](#) and [USP Theophylline Related Compound D RS](#)**Sample solution:** Nominally 400 μ g/mL of theophylline in [water](#) prepared as follows. Transfer 4 mg of theophylline from a volume of Injection to a 10-mL volumetric flask. Dissolve and dilute with [water](#) to volume.**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 270 nm**Column:** 2.1-mm \times 10-cm; 1.7- μ m packing [L7](#)**Column temperature:** 40°**Flow rate:** 0.4 mL/min**Injection volume:** 2.5 μ L

System suitability**Samples:** System suitability solution and Standard solution[NOTE—See [Table 2](#) for relative retention times.]**Suitability requirements****Resolution:** NLT 1.1 between theophylline related compound D and 5-hydroxymethylfurfural, *System suitability solution***Relative standard deviation:** NMT 5.0% for theophylline and theophylline related compound D, *Standard solution***Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of theophylline related compound D in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of theophylline related compound D from the *Sample solution* r_S = peak response of theophylline related compound D from the *Standard solution* C_S = concentration of [USP Theophylline Related Compound D RS](#) in the *Standard solution* ($\mu\text{g/mL}$) C_U = nominal concentration of theophylline in the *Sample solution* ($\mu\text{g/mL}$)

Calculate the percentage of any other individual unspecified degradation product in the portion of Injection taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of any other individual unspecified degradation product from the *Sample solution* r_S = peak response of theophylline from the *Standard solution* C_S = concentration of [USP Theophylline RS](#) in the *Standard solution* ($\mu\text{g/mL}$) C_U = nominal concentration of theophylline in the *Sample solution* ($\mu\text{g/mL}$)**Acceptance criteria:** See [Table 2](#). Disregard peaks less than 0.1%.**Table 2**

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Theophylline related compound D	0.44	0.2
5-HMF ^a	0.47	—
Theophylline	1.0	—
Any other individual unspecified degradation product	—	0.2
Total degradation products	—	0.5

^a 5-Hydroxymethylfurfural; the content of this impurity is controlled in the *Limit of 5-Hydroxymethylfurfural and Related Substances* test.**LIMIT OF 5-HYDROXYMETHYLFURFURAL AND RELATED SUBSTANCES****Cation-exchange column:** Proceed as directed in [Chromatography \(621\)](#), using a chromatographic tube capable of providing a 0.8- x 4-cm bed volume (or 2 mL) of 100- to 200-mesh, [strongly acidic styrene-divinylbenzene cation-exchange resin](#). Condition the column by washing with 30 mL of [water](#), discarding the eluate.**Sample solution:** Pass a volume of Injection containing 100 mg of hydrous dextrose through the resin bed in the *Cation-exchange column*, allowing the sample to flow down the wall of the column so as not to disturb the resin bed, and collect the eluate in a 50-mL volumetric

flask. Wash the column with 25 mL of [water](#), and collect the eluate in the same 50-mL volumetric flask. Dilute the eluate with [water](#) to volume.

Blank solution: Pass 27 mL of [water](#) through a freshly conditioned *Cation-exchange column*, collecting the eluate in a 50-mL volumetric flask.

Fill with [water](#) to volume.

Instrumental conditions

Mode: UV

Analytical wavelength: 284 nm

Cell: 1 cm

Blank: *Blank solution*

Analysis

Samples: *Sample solution* and *Blank solution*

Determine the absorbance of the *Sample solution* and *Blank solution* with a suitable spectrophotometer.

Acceptance criteria: The absorbance is NMT 0.25.

SPECIFIC TESTS

• [BACTERIAL ENDOTOXINS TEST \(85\)](#): NMT 1.0 USP Endotoxin Unit/mg of anhydrous theophylline

• [pH \(791\)](#).

Sample solution: NMT 5% of dextrose from a portion of Injection in water, diluted with [water](#) if necessary

Acceptance criteria: 3.5–6.5

• [OTHER REQUIREMENTS](#): It meets the requirements in [Injections and Implanted Drug Products \(1\)](#).

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in single-dose containers, preferably of Type I or Type II glass, or of a suitable plastic material. Store at controlled room temperature.

• [USP REFERENCE STANDARDS \(11\)](#).

[USP Theophylline RS](#)

[USP Theophylline Related Compound D RS](#)

Theophyllidine;

N-Methyl-5-(methylamino)-1*H*-imidazole-4-carboxamide hydrochloride monohydrate.

$C_6H_{10}N_4O \cdot HCl \cdot H_2O$ 208.65

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
THEOPHYLLINE IN DEXTROSE INJECTION	Documentary Standards Support	SM52020 Small Molecules 5
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM52020 Small Molecules 5

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 42(3)

Current DocID: [GUID-729E208C-57DC-4BFF-999D-DEC572DB5302_3_en-US](#)

Previous DocID: [GUID-729E208C-57DC-4BFF-999D-DEC572DB5302_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M82210_03_01

DOI ref: [db8z8](#)