


Status: Currently Official on 18-Feb-2025  
 Official Date: Official as of 01-May-2022  
 Document Type: USP Monographs  
 DocId: GUID-8AC53C75-724A-4DE8-B6E8-20496B8906D7\_6\_en-US  
 DOI: [https://doi.org/10.31003/USPNF\\_M81740\\_06\\_01](https://doi.org/10.31003/USPNF_M81740_06_01)  
 DOI Ref: 7b61t

© 2025 USPC  
 Do not distribute

## Tetracycline

### Change to read:



$C_{22}H_{24}N_2O_8$  444.44

2-Naphthacencarboxamide, 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-, [4S-(4a,4a $\alpha$ ,5a $\alpha$ ,6 $\beta$ ,12a $\alpha$ )]-;

(4S,4aS,5aS,12aS)-4-(Dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-

naphthacencarboxamide CAS RN®: 60-54-8; ▲UNII: F8VB5M810T.▲ (IRA 1-May-2022)

Trihydrate 498.49 CAS RN®: 6416-04-2; UNII: 93V6NC52SB.

### DEFINITION

Tetracycline has a potency equivalent to NLT 975  $\mu$ g/mg of tetracycline hydrochloride ( $C_{22}H_{24}N_2O_8 \cdot HCl$ ), calculated on the anhydrous basis.

### IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Ultraviolet-Visible Spectroscopy](#): 197U

**Sample solution:** 20  $\mu$ g/mL in 0.25 N [sodium hydroxide](#)

**Analytical wavelength:** 380 nm

**Analysis:** Measure the absorptivity 6 min after preparation.

**Acceptance criteria:** Absorptivity, calculated on the anhydrous basis and taking into account the potency of the Reference Standard, is between 104.5% and 111.95% of the absorptivity of [USP Tetracycline Hydrochloride RS](#).

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

### ASSAY

#### • PROCEDURE

**Solution A:** Dilute 1 mL of [phosphoric acid](#) with [water](#) to 1 L.

**Solution B:** [Acetonitrile](#)

**Mobile phase:** See [Table 1](#).

Table 1

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 0             | 85                | 15                |
| 7.5           | 60                | 40                |
| 7.6           | 85                | 15                |
| 10            | 85                | 15                |

**System suitability solution:** 25  $\mu$ g/mL each of [USP Anhydrotetracycline Hydrochloride RS](#), [USP Epitetracycline Hydrochloride RS](#), and [USP 4-Epianhydrotetracycline Hydrochloride RS](#), and 100  $\mu$ g/mL of [USP Tetracycline Hydrochloride RS](#) in *Solution A*

**Standard solution:** 100  $\mu$ g/mL of [USP Tetracycline Hydrochloride RS](#) in *Solution A*

**Sample solution:** 90  $\mu$ g/mL of Tetracycline in *Solution A*

#### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 280 nm**Column:** 4.6-mm × 15-cm; 3-μm packing [L60](#). [NOTE—Column with [L1](#) packing is also suitable.]**Temperatures****Autosampler:** 10°**Column:** 50°**Flow rate:** 1.0 mL/min**Injection volume:** 10 μL**System suitability****Samples:** System suitability solution and Standard solution**Suitability requirements****Resolution:** NLT 2.5 between epitetracycline and tetracycline; NLT 2.5 between anhydrotetracycline and 4-epianhydrotetracycline, System suitability solution**Tailing factor:** NMT 1.5, Standard solution**Relative standard deviation:** NMT 0.73%, Standard solution**Analysis****Samples:** Standard solution and Sample solutionCalculate the potency equivalent, in μg/mg, of tetracycline hydrochloride ( $C_{22}H_{24}N_2O_8 \cdot HCl$ ) in the portion of Tetracycline taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times P$$

 $r_u$  = peak response of tetracycline from the Sample solution $r_s$  = peak response of tetracycline from the Standard solution $C_s$  = concentration of [USP Tetracycline Hydrochloride RS](#) in the Standard solution (μg/mL) $C_u$  = concentration of Tetracycline in the Sample solution (μg/mL) $P$  = potency of [USP Tetracycline Hydrochloride RS](#) (μg/mg)**Acceptance criteria:** NLT 975 μg/mg on the anhydrous basis**IMPURITIES****Change to read:**• **ORGANIC IMPURITIES****Solution A, Solution B, Mobile phase, Sample solution, and Chromatographic system:** Proceed as directed in the Assay.**System suitability solution:** 25 μg/mL each of [USP Anhydrotetracycline Hydrochloride RS](#), [USP Epitetracycline Hydrochloride RS](#), [USP 4-Epianhydrotetracycline Hydrochloride RS](#), and [USP Tetracycline Hydrochloride RS](#) in Solution A**▲Standard solution 1:** 0.5 μg/mL of [USP Anhydrotetracycline Hydrochloride RS](#) and 3 μg/mL of [USP Epitetracycline Hydrochloride RS](#) in Solution A**Standard solution 2:** 2 μg/mL of [USP 4-Epianhydrotetracycline Hydrochloride RS](#) in Solution A**Standard solution 3:** 0.1 μg/mL of [USP Tetracycline Hydrochloride RS](#) in Solution A ▲ (IRA 1-May-2022)**System suitability****Samples:** System suitability solution, ▲Standard solution 1, Standard solution 2, and Standard solution 3 ▲ (IRA 1-May-2022)**Suitability requirements****Resolution:** NLT 2.5 between epitetracycline and tetracycline; NLT 2.5 between anhydrotetracycline and 4-epianhydrotetracycline, System suitability solution**Relative standard deviation:** ▲NMT 2.8% for anhydrotetracycline and epitetracycline, Standard solution 1; NMT 2.8% for 4-epianhydrotetracycline, Standard solution 2; NMT 2.8% for tetracycline, Standard solution 3 ▲ (IRA 1-May-2022)**Analysis****Samples:** ▲Standard solution 1, Standard solution 2, Standard solution 3, ▲ (IRA 1-May-2022) and Sample solution

▲Calculate the percentage of anhydrotetracycline hydrochloride and epitetracycline hydrochloride in the portion of Tetracycline taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 $r_u$  = peak response of anhydrotetracycline or epitetracycline from the Sample solution $r_s$  = peak response of the corresponding USP Reference Standard from Standard solution 1 $C_s$  = concentration of the corresponding USP Reference Standard in Standard solution 1 (μg/mL) $C_u$  = concentration of Tetracycline in the Sample solution (μg/mL)

Calculate the percentage of 4-epianhydrotetracycline hydrochloride in the portion of Tetracycline taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

$r_u$  = peak response of 4-epianhydrotetracycline from the *Sample solution*

$r_s$  = peak response of 4-epianhydrotetracycline from *Standard solution 2*

$C_s$  = concentration of the [USP 4-Epianhydrotetracycline Hydrochloride RS](#) in *Standard solution 2* ( $\mu\text{g/mL}$ )

$C_u$  = concentration of Tetracycline in the *Sample solution* ( $\mu\text{g/mL}$ ) ▲ (IRA 1-May-2022)

Calculate the percentage of 2-acetyl analog or any unspecified impurity in the portion of Tetracycline taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

$r_u$  = peak response of 2-acetyl analog or any unspecified impurity from the *Sample solution*

$r_s$  = peak response of tetracycline from ▲*Standard solution 3* ▲ (IRA 1-May-2022)

$C_s$  = concentration of [USP Tetracycline Hydrochloride RS](#) in ▲*Standard solution 3* ▲ (IRA 1-May-2022) ( $\mu\text{g/mL}$ )

$C_u$  = concentration of Tetracycline in the *Sample solution* ( $\mu\text{g/mL}$ )

$M_{r1}$  = molecular weight of tetracycline, 444.44

$M_{r2}$  = molecular weight of tetracycline hydrochloride, 480.90

**Acceptance criteria:** See [Table 2](#). ▲The reporting threshold is ▲ (IRA 1-May-2022) 0.05%.

**Table 2**

| Name                                        | Relative Retention Time | Acceptance Criteria, NMT (%) |
|---------------------------------------------|-------------------------|------------------------------|
| ▲Epitetracycline ▲ (IRA 1-May-2022)         | 0.9                     | 3.0                          |
| Tetracycline                                | 1.0                     | —                            |
| 2-Acetyl analog <sup>a</sup>                | 1.3                     | 2.0                          |
| 4-Epianhydrotetracycline ▲ (IRA 1-May-2022) | 1.7                     | 2.0                          |
| Anhydrotetracycline ▲ (IRA 1-May-2022)      | 1.9                     | 0.5                          |
| Any individual unspecified impurity         | —                       | 0.10                         |

<sup>a</sup> 2-Acetyl-2-decarbamoyltetracycline; also known as (4S,4aS,5aS,6S,12aS)-2-Acetyl-4-(dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-4a,5a,6,12a-tetrahydrotetracene-1,11(4H,5H)-dione.

#### SPECIFIC TESTS

- [OPTICAL ROTATION \(781S\), Procedures, Specific Rotation](#)

**Sample solution:** 5 mg/mL of tetracycline in [0.1 N hydrochloric acid](#)

**Acceptance criteria:** -260° to -280° on the anhydrous basis

- [CRYSTALLINITY \(695\)](#): Meets the requirements

- [pH \(791\)](#)

**Sample solution:** Prepare in an aqueous suspension (1 in 100).

**Acceptance criteria:** 3.0–7.0

- [WATER DETERMINATION \(921\), Method I](#): NMT 13.0%

#### ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers.

- **LABELING:** Label it to indicate that it is to be used in the manufacture of nonparenteral drugs only.

**Change to read:**

• [USP REFERENCE STANDARDS \(11\)](#)[USP Anhydrotetracycline Hydrochloride RS](#)

▲(4S,4aS,12aS)-4-(Dimethylamino)-3,10,11,12a-tetrahydroxy-6-methyl-1,12-dioxo-1,4,4a,5,12,12a-hexahydrotetracene-2-carboxamide monohydrochloride.

$C_{22}H_{22}N_2O_7 \cdot HCl$  462.88▲ (IRA 1-May-2022)

[USP 4-Epianhydrotetracycline Hydrochloride RS](#)

▲(4R,4aS,12aS)-4-(Dimethylamino)-3,10,11,12a-tetrahydroxy-6-methyl-1,12-dioxo-1,4,4a,5,12,12a-hexahydrotetracene-2-carboxamide hydrochloride.

$C_{22}H_{22}N_2O_7 \cdot HCl$  462.88▲ (IRA 1-May-2022)

[USP Epitetracycline Hydrochloride RS](#)

▲(4R,4aS,5aS,6S,12aS)-4-(Dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide monohydrochloride.

$C_{22}H_{24}N_2O_8 \cdot HCl$  480.90▲ (IRA 1-May-2022)

[USP Tetracycline Hydrochloride RS](#)

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee          |
|----------------------------|-----------------------------------------------------------------------------|---------------------------|
| TETRACYCLINE               | <a href="#">Documentary Standards Support</a>                               | SM12020 Small Molecules 1 |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM12020 Small Molecules 1 |

**Chromatographic Database Information:** [Chromatographic Database](#)

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 47(4)

**Current DocID:** [GUID-8AC53C75-724A-4DE8-B6E8-20496B8906D7\\_6\\_en-US](#)

**DOI:** [https://doi.org/10.31003/USPNF\\_M81740\\_06\\_01](https://doi.org/10.31003/USPNF_M81740_06_01)

**DOI ref:** [7b61t](#)