

Status: Currently Official on 18-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-E6E9676F-A37E-426A-8093-1AD69413DA41_2_en-US
DOI: https://doi.org/10.31003/USPNF_M80885_02_01
DOI Ref: 54lto

© 2025 USPC
Do not distribute

Terconazole

$C_{26}H_{31}Cl_2N_5O_3$ 532.46

Piperazine, 1-[4-[[2-(2,4-dichlorophenyl)-2-(1*H*-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-4-(1-methylethyl)-, *cis*-
cis-1-[*p*-[[2-(2,4-Dichlorophenyl)-2-(1*H*-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-4-isopropylpiperazine CAS RN®: 67915-31-5;
UNII: 0KJ2VE664U.

» Terconazole contains not less than 98.0 percent and not more than 102.0 percent of $C_{26}H_{31}Cl_2N_5O_3$, calculated on the dried basis.

Packaging and storage—Preserve in light-resistant containers. Store at room temperature.

USP REFERENCE STANDARDS (11)—

[USP Terconazole RS](#)

Change to read:

Identification, ▲ [Spectroscopic Identification Tests \(197\)](#), [Infrared Spectroscopy: 197K](#), ▲ (CN 1-May-2020)

SPECIFIC ROTATION (781S): between -1° and +1° at 20°.

Test solution: 40 mg per mL solution in methylene chloride.

LOSS ON DRYING (731)—Dry it in a vacuum at 80° for 4 hours: it loses not more than 0.75% of its weight, a 2.0-g specimen being used.

RESIDUE ON IGNITION (281): not more than 0.1%, a 2.0-g specimen being used.

Related compounds—[NOTE—Use the solutions within 24 hours if protected from light and within 1 hour if not protected from light.]

Solution A—Prepare and filter a 0.6% ammonium carbonate solution in water.

Solution B: acetonitrile.

Solution C: tetrahydrofuran.

Mobile phase—Use variable mixtures of **Solution A**, **Solution B**, and **Solution C** as directed for **Chromatographic system**. Make adjustments if necessary (see **System Suitability** under [Chromatography \(621\)](#)).

Standard solution—Dissolve in and dilute with alcohol an accurately weighed quantity of [USP Terconazole RS](#) to obtain a solution having a known concentration of about 0.1 mg per mL.

Test solution—Dissolve in and dilute with alcohol an accurately weighed quantity of Terconazole to obtain a solution having a concentration of about 10 mg per mL.

Chromatographic system (see [CHROMATOGRAPHY \(621\)](#))—The liquid chromatograph is equipped with a 225-nm detector and a 4.6-mm × 10-cm column that contains 3-μm packing L1. The flow rate is about 2 mL per minute. The chromatograph is programmed as shown in the table below.

Time (minutes)	Solution A (%)	Solution B (%)	Solution C (%)	Elution
0-15	80-55	20-25	0-20	linear gradient
15-17	55-0	25-80	20	linear gradient
17-20	0	80	20	isocratic
20-21	0-80	80-20	20-0	step gradient

Time (minutes)	Solution A (%)	Solution B (%)	Solution C (%)	Elution
21–25	80	20	0	re-equilibration

Chromatograph the *Standard solution*, and record the peak responses as directed for *Procedure*: the tailing factor for terconazole peak is not less than 0.9 and not more than 1.3; and the relative standard deviation for replicate injection is not more than 5.0%.

Procedure—Separately inject equal volumes (about 10 μ L) of the *Test solution* and the *Standard solution* into the chromatograph, record the chromatograms, and measure the peak responses. Identify the impurities using the relative retention times given in [Table 1](#). Calculate the percentage of each terconazole related compound in the portion of Terconazole taken by the formula:

$$100(C_s/C_u)(r_u/r_s)(1/F)$$

in which C_s and C_u are the concentrations, in mg per mL, of terconazole in the *Standard solution* and the *Test solution*, respectively; r_u is the peak response of each impurity obtained from the *Test solution*; r_s is the peak response of terconazole obtained from the *Standard solution*; and F is the relative response factor for each impurity relative to terconazole.

Table 1

Impurity	Approx. RRT	Relative Response Factor (F)	Limit (%)
B ^a	0.88	0.94	0.50
A ^b	0.95	0.92	0.50
Any unspecified impurity	—	1.0	0.10
Total impurities	—	—	1.0

^a 1-[4-[(2RS,4SR)-2-(2,4-Dichlorophenyl)-2-[(4H-1,2,4-triazol-4-yl)methyl]-1,3-dioxolan-4-yl]methoxy]phenyl]-4-(1-methylethyl)piperazine.

^b 1-[4-[(2RS,4RS)-2-(2,4-Dichlorophenyl)-2-[(1H-1,2,4-triazol-1-yl)methyl]-1,3-dioxolan-4-yl)methoxy]phenyl]-4-(1-methylethyl)piperazine.

The limits in [Table 1](#) are met. Disregard any impurity that is less than 0.10%.

Assay—Dissolve about 135 mg of Terconazole, accurately weighed, in about 70 mL of previously neutralized glacial acetic acid. Titrate with 0.1 N perchloric acid VS, and determine the endpoint potentiometrically (see [Titrimetry \(541\)](#)). Each mL of 0.1 N perchloric acid is equivalent to 17.75 mg of $C_{26}H_{31}Cl_2N_5O_3$.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TERCONAZOLE	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 51(1)

Current DocID: [GUID-E6E9676F-A37E-426A-8093-1AD69413DA41_2_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M80885_02_01

DOI ref: [54Ito](#)