

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2020
Document Type: USP Monographs
DocId: GUID-0F18F629-1437-42C5-948F-3706593FD039_2_en-US
DOI: https://doi.org/10.31003/USPNF_M80845_02_01
DOI Ref: vn9df

© 2025 USPC
Do not distribute

Terbinafine Hydrochloride

$C_{21}H_{25}N \cdot HCl$ 327.90

1-Naphthalenemethanamine, *N*-(6,6-dimethyl-2-hepten-4-ynyl)-*N*-methyl-, (*E*)-, hydrochloride;
(*E*)-*N*-(6,6-Dimethyl-2-hepten-4-ynyl)-*N*-methyl-1-naphthalenemethylamine, hydrochloride;
(2*E*)-*N*,6,6-Trimethyl-*N*-(naphthalen-1-ylmethyl)hept-2-en-4-yn-1-amine hydrochloride CAS RN®: 78628-80-5; UNII: 012C11ZU6G.

DEFINITION

Terbinafine Hydrochloride contains NLT 98.0% and NMT 102.0% of terbinafine hydrochloride ($C_{21}H_{25}N \cdot HCl$), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. [▲ SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy: 197K](#) ▲ (CN 1-MAY-2020)
- B. [IDENTIFICATION TESTS—GENERAL, Chloride \(191\)](#): Meets the requirements of the test when using dehydrated alcohol as a solvent

ASSAY

• PROCEDURE

Protect all solutions containing Terbinafine Hydrochloride from light.

Buffer: Prepare a solution in water containing 2.0 mL/L of triethylamine. Adjust with diluted acetic acid to a pH of 7.5.

Solution A: *Solution C and Buffer* (7:3)

Solution B: *Solution C and Buffer* (95:5)

Solution C: Methanol and acetonitrile (3:2)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
4	100	0
25	0	100
30	0	100
30.1	100	0
38	100	0

Diluent: Acetonitrile and water (1:1)

System suitability solution: 1 mg/mL of [USP Terbinafine Hydrochloride RS](#) and 5 µg/mL of [USP Terbinafine Related Compound B RS](#) in *Diluent*

Standard solution: 0.5 mg/mL of [USP Terbinafine Hydrochloride RS](#) in *Diluent*

Sample solution: 0.5 mg/mL of Terbinafine Hydrochloride in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 280 nm

Column: 3.0-mm × 15-cm; 5-μm packing L1

Column temperature: 40°

Flow rate: 0.8 mL/min

Injection volume: 20 μL

System suitability

Samples: *System suitability solution* and *Standard solution*

[**NOTE**—The relative retention times for terbinafine related compound B and terbinafine are 0.94 and 1.0, respectively.]

Suitability requirements

Resolution: NLT 2.0 between terbinafine related compound B and terbinafine, *System suitability solution*

Tailing factor: NLT 0.8 and NMT 1.5 for terbinafine, *Standard solution*

Relative standard deviation: NMT 2.0% for terbinafine, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of terbinafine hydrochloride ($C_{21}H_{25}N \cdot HCl$) in the portion of Terbinafine Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of terbinafine from the *Sample solution*

r_S = peak response of terbinafine from the *Standard solution*

C_S = concentration of [USP Terbinafine Hydrochloride RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Terbinafine Hydrochloride in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the dried basis

IMPURITIES

• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

• **ORGANIC IMPURITIES**

Protect all solutions containing Terbinafine Hydrochloride from light.

Buffer, Solution A, Solution B, Solution C, Mobile phase, Diluent, System suitability solution, and Chromatographic system: Proceed as directed in the Assay.

Standard solution: 0.5 μg/mL each of [USP Terbinafine Hydrochloride RS](#), [USP Terbinafine Related Compound A RS](#), [USP Terbinafine Related Compound B RS](#), [USP Terbinafine Related Compound C RS](#), and [USP Terbinafine Related Compound D RS](#) in *Diluent*

Sample solution: 0.5 mg/mL of Terbinafine Hydrochloride in *Diluent*

Sensitivity solution: 0.25 μg/mL of [USP Terbinafine Hydrochloride RS](#) in *Diluent* from the *Standard solution*

System suitability

Samples: *System suitability solution*, *Standard solution*, and *Sensitivity solution*

Suitability requirements

Resolution: NLT 2.0 between terbinafine related compound B and terbinafine, *System suitability solution*

Relative standard deviation: NMT 10% for terbinafine, *Standard solution*

Signal-to-noise ratio: NLT 10 for terbinafine, *Sensitivity solution*

Calculate the signal-to-noise ratio:

$$\text{Result} = (2H)/h$$

H = measured height of the terbinafine peak

h = amplitude of the average measured baseline noise

Analysis

Samples: *Standard solution* and *Sample solution*

Identify the peaks based on their relative retention times as given in [Table 2](#).

Calculate the percentage of terbinafine related compound A, terbinafine related compound B, terbinafine related compound C, and terbinafine related compound D in the portion of Terbinafine Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of terbinafine related compound A, terbinafine related compound B, terbinafine related compound C, or terbinafine related compound D from the *Sample solution*

r_S = peak response of terbinafine related compound A, terbinafine related compound B, terbinafine related compound C, or terbinafine related compound D from the *Standard solution*

C_S = concentration of [USP Terbinafine Related Compound A RS](#), [USP Terbinafine Related Compound B RS](#), [USP Terbinafine Related Compound C RS](#), or [USP Terbinafine Related Compound D RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_U = concentration of Terbinafine Hydrochloride in the *Sample solution* ($\mu\text{g/mL}$)

Calculate the percentage of terbinafine dimer or any other individual impurity in the portion of Terbinafine Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of terbinafine dimer or any other individual impurity from the *Sample solution*

r_S = peak response of the terbinafine peak from the *Standard solution*

C_S = concentration of [USP Terbinafine Hydrochloride RS](#) in the *Standard solution* ($\mu\text{g/mL}$)

C_U = concentration of Terbinafine Hydrochloride in the *Sample solution* ($\mu\text{g/mL}$)

F = relative response factor (see [Table 2](#))

Acceptance criteria: See [Table 2](#). Disregard any peak observed in the blank, and any peak less than 0.05%.

Table 2

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Terbinafine related compound A ^a	0.1	—	0.1
Terbinafine related compound C ^b	0.92	—	0.1
Terbinafine related compound B ^c	0.94	—	0.1
Terbinafine	1.0	—	—
Terbinafine related compound D ^d	1.1	—	0.1
Terbinafine dimer ^e	1.7	2.5	0.05
Any other individual impurity	—	1.0	0.1
Total impurities	—	—	0.3

^a N-Methyl-1-(naphthalen-1-yl)methanamine, also known as N-methyl-C-(naphthalen-1-yl)methanamine.

^b *trans*-Isoterbinafine or (2E)-N,6,6-Trimethyl-N-(naphthalen-2-ylmethyl)hept-2-en-4-yn-1-amine.

- ^c cis-Terbinafine or (2Z)-N,6,6-Trimethyl-N-(naphthalen-1-ylmethyl)hept-2-en-4-yn-1-amine.
- ^d 4-Methylterbinafine or (2E)-N,6,6-Trimethyl-N-((4-methylnaphthalen-1-yl)methyl)hept-2-en-4-yn-1-amine.
- ^e (2E,4E)-4-(4,4-Dimethylpent-2-ynylidene)-N¹,N⁵-dimethyl-N¹,N⁵-bis(naphthalen-1-ylmethyl)pent-2-ene-1,5-diamine.

SPECIFIC TESTS

- [Loss on Drying \(731\)](#).

Analysis: Dry at 105° to constant weight.

Acceptance criteria: NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers, protected from light. Store at room temperature.

- [USP REFERENCE STANDARDS \(11\)](#).

[USP Terbinafine Hydrochloride RS](#)

[USP Terbinafine Related Compound A RS](#)

N-Methyl-C-(naphthalen-1-yl)methanamine hydrochloride.

$C_{12}H_{13}N \cdot HCl$ 207.70

[USP Terbinafine Related Compound B RS](#)

(2Z)-N,6,6-Trimethyl-N-(naphthalen-1-ylmethyl)hept-2-en-4-yn-1-amine hydrochloride.

$C_{21}H_{25}N \cdot HCl$ 327.89

[USP Terbinafine Related Compound C RS](#)

(2E)-N,6,6-Trimethyl-N-(naphthalen-2-ylmethyl)hept-2-en-4-yn-1-amine hydrochloride.

$C_{21}H_{25}N \cdot HCl$ 327.89

[USP Terbinafine Related Compound D RS](#)

(2E)-N,6,6-Trimethyl-N-[(4-methylnaphthalen-1-yl)methyl]hept-2-en-4-yn-1-amine hydrochloride.

$C_{22}H_{27}N \cdot HCl$ 341.92

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TERBINAFINE HYDROCHLORIDE	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 39(3)

Current DocID: GUID-0F18F629-1437-42C5-948F-3706593FD039_2_en-US

DOI: https://doi.org/10.31003/USPNF_M80845_02_01

DOI ref: [vn9df](#)