

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2019
Document Type: USP Monographs
DocId: GUID-0E199865-0E5B-48D1-843D-401F415AA6DB_2_en-US
DOI: https://doi.org/10.31003/USPNF_M80842_02_01
DOI Ref: y5lj1

© 2025 USPC
Do not distribute

Terazosin Tablets

DEFINITION

Change to read:

Terazosin Tablets contain NLT 90.0% and NMT 110.0% of the labeled amount of **▲ anhydrous** **▲ (USP 1-May-2019)** terazosin hydrochloride ($C_{19}H_{25}N_5O_4 \cdot HCl$), calculated as the free base.

IDENTIFICATION

Change to read:

- **A.** **▲** The UV spectrum of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*. **▲ (USP 1-May-2019)**
- **B.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.

ASSAY

Change to read:

• PROCEDURE

▲ (USP 1-May-2019)

Hydrochloric acid solution: 0.01 N methanolic hydrochloric acid is prepared by adding 0.85 mL of [hydrochloric acid](#) to 1 L of [methanol](#).

Diluent: [Hydrochloric acid solution](#) and [water](#) (40:60)

Mobile phase: [Acetonitrile](#) and [water](#) (70:30). Add 10.00 mL/L of [glacial acetic acid](#), and degas. Pass through a nylon filter of 0.45- μ m pore size. Pipet 0.20 mL/L of [diethylamine](#) into the solution, and mix.

Standard stock solution: 0.55 mg/mL of [USP Terazosin Hydrochloride RS](#) in *Diluent*. Sonicate for 5 min to completely dissolve.

Standard solution: 0.055 mg/mL of [USP Terazosin Hydrochloride RS](#) in *Diluent* from the *Standard stock solution*. Pass through a PTFE filter of 0.45- μ m pore size, discarding the first few milliliters of filtrate.

Naproxen standard solution: 0.5 mg/mL of [USP Naproxen RS](#), prepared as follows. Dissolve by sonication of [USP Naproxen RS](#) in 25% of the volume of the flask of [acetonitrile](#), and dilute with [water](#) to volume.

System suitability solution: 0.05 mg/mL of [USP Naproxen RS](#) and 0.055 mg/mL of [USP Terazosin Hydrochloride RS](#) in *Diluent* from the *Naproxen standard solution* and *Standard stock solution*, respectively. Pass through a PTFE filter of 0.45- μ m pore size, discarding the first few milliliters of filtrate.

Sample solution: Nominally 0.05 mg/mL of terazosin in *Diluent*, prepared as follows. **▲** Transfer a quantity of NLT 20 Tablets, **▲ (USP 1-May-2019)** equivalent to 10 mg of terazosin into a 200-mL flask. Add 100 mL of *Diluent*, and sonicate for NLT 10 min. Shake the flask mechanically for NLT 10 min. Repeat until the sample is well dispersed. Allow the solution to cool, and dilute with *Diluent* to volume. Pass through a PTFE filter of 0.45- μ m pore size, discarding the first few milliliters of filtrate.

Chromatographic system

(See *Chromatography* (621), *System Suitability*.)

Mode: LC

Detector: UV 254 nm.

▲ For *Identification A*, use a diode array detector in the range of 200–400 nm. **▲ (USP 1-May-2019)**

Column: 4.6-mm \times 15-cm; 5- μ m packing L1

Flow rate: 2.5 mL/min

Injection volume: 25 μ L

Run time: NLT twice the retention time of terazosin

System suitability

Samples: *Standard solution* and *System suitability solution*

[NOTE—▲The relative retention times for naproxen and terazosin are 0.7 and 1.0, respectively.▲ (USP 1-May-2019)]

Suitability requirements**Resolution:** NLT 2.0 between naproxen and terazosin, *System suitability solution***Tailing factor:** NMT 1.8 for terazosin, *System suitability solution***Relative standard deviation:** NMT 2.0, *Standard solution***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of terazosin ($C_{19}H_{25}N_5O_4$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times 100$$

 r_U = peak response of terazosin from the *Sample solution* r_S = peak response of terazosin from the *Standard solution* C_S = concentration of ▲[USP Terazosin Hydrochloride RS](#)▲ (USP 1-May-2019) in the *Standard solution* (mg/mL) C_U = nominal concentration of terazosin in the *Sample solution* (mg/mL) M_{r1} = molecular weight of terazosin, ▲387.44▲ (USP 1-May-2019) M_{r2} = molecular weight of ▲anhydrous▲ (USP 1-May-2019) terazosin hydrochloride, ▲423.90▲ (USP 1-May-2019)**Acceptance criteria:** 90.0%–110.0%, calculated as the free base**PERFORMANCE TESTS****Change to read:**

- [Dissolution \(711\)](#).

Medium: [Water](#); 900 mL**Apparatus 2:** 50 rpm**Time:** 30 min**Standard solution:** 0.006 mg/mL of [USP Terazosin Hydrochloride RS](#) in *Medium***Sample solution:** Pass a portion of the solution through a suitable filter of 0.45-μm pore size. Dilute with *Medium* to a concentration similar to that of the *Standard solution*, assuming complete dissolution of the label claim.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** UV 245 nm**Cell length:** 1 cm**Blank:** *Medium***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of terazosin ($C_{19}H_{25}N_5O_4$) dissolved:

$$\text{Result} = (A_U/A_S) \times (C_S/L) \times (M_{r1}/M_{r2}) \times V \times 100$$

 A_U = absorbance of the *Sample solution* A_S = absorbance of the *Standard solution* C_S = concentration of the *Standard solution* ▲(mg/mL)▲ (USP 1-May-2019) L = label claim (mg/Tablet) M_{r1} = molecular weight of terazosin, ▲387.44▲ (USP 1-May-2019) M_{r2} = molecular weight of ▲anhydrous▲ (USP 1-May-2019) terazosin hydrochloride, ▲423.90▲ (USP 1-May-2019) V = volume of *Medium*, 900 mL

Tolerances: NLT 75% (Q) of the labeled amount of terazosin ($C_{19}H_{25}N_5O_4$) is dissolved.

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements

IMPURITIES

Change to read:

• ORGANIC IMPURITIES

Buffer: Dissolve 4.1 g of [monobasic potassium phosphate](#) and 1.1 g of [sodium 1-heptanesulfonate monohydrate](#) in 950 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 3.0 ± 0.10 . Dilute with [water](#) to 1 L. Pass through a Δ suitable Δ (USP 1-May-2019) filter of 0.45- μ m pore size.

Mobile phase: [Acetonitrile](#) and **Buffer** (24:76)

Standard solution: 0.003 mg/mL of Δ Δ (USP 1-May-2019) [USP Terazosin Hydrochloride RS](#) in *Mobile phase*

Sensitivity solution: 0.15 μ g/mL of [USP Terazosin Hydrochloride RS](#) in *Mobile phase* from the **Standard solution**

Sample solution: Δ Nominally 0.3 mg/mL of terazosin in *Mobile phase*, prepared as follows. Transfer a portion of the powder from the crushed Tablets (NLT 20), equivalent to 15 mg of terazosin, into a 50-mL volumetric flask. Δ (USP 1-May-2019) Dilute with *Mobile phase* to approximately half the volume of the flask. Sonicate for NLT 10 min, and shake the flask for NLT 20 min. Dilute with *Mobile phase* to volume, and pass through a Δ suitable Δ (USP 1-May-2019) filter of 0.45- μ m pore size, discarding the first 5 mL of filtrate.

Chromatographic system

(See *Chromatography (621), System Suitability*.)

Mode: LC

Detector: UV 246 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L1](#)

Δ Δ (USP 1-May-2019)

Flow rate: 1 mL/min

Injection volume: 10 μ L

Run time: Δ NLT 4.5 times the retention time of terazosin Δ (USP 1-May-2019)

System suitability

Samples: *Standard solution* and *Sensitivity solution*

Suitability requirements

Capacity factor, k' : NLT 1.0, *Standard solution*

Tailing factor: NMT 2.0, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of each Δ specified and unspecified degradation product Δ (USP 1-May-2019) in the portion of Tablets taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of each individual Δ degradation product Δ (USP 1-May-2019) from the *Sample solution*

r_s = peak response of terazosin from the *Standard solution*

C_s = concentration of Δ [USP Terazosin Hydrochloride RS](#) Δ (USP 1-May-2019) in the *Standard solution* (mg/mL)

C_u = nominal concentration of terazosin in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 1](#))

M_{r1} = molecular weight of terazosin, Δ 387.44 Δ (USP 1-May-2019)

M_{r2} = molecular weight of Δ anhydrous Δ (USP 1-May-2019) terazosin hydrochloride, Δ 423.90 Δ (USP 1-May-2019)

Acceptance criteria: See [Table 1](#).

Table 1

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
▲Terazosin related compound A▲ (USP 1-May-2019) ^a	0.52	1.1	0.4
▲Terazosin	1.0	1.0	—▲ (USP 1-May-2019)
▲Doxazosin related compound C▲ (USP 1-May-2019) ^b	1.37	1.2	0.4
▲Terazosin related compound C▲ (USP 1-May-2019) ^c	3.85	1.0	0.4
Any ▲unspecified degradation product▲ (USP 1-May-2019)	—	▲1.0▲ (USP 1-May-2019)	0.2
Total ▲degradation products▲ (USP 1-May-2019)	—	—	1.2

▲a 6,7-Dimethoxy-2-(piperazin-1-yl)quinazolin-4-amine dihydrochloride.

▲b 2-Chloro-4-amino-6,7-dimethoxyquinazoline.

▲c 2,2'-(Piperazine-1,4-diyl)bis(6,7-dimethoxyquinazolin-4-amine) dihydrochloride.▲ (USP 1-May-2019)

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers protected from moisture and light. Store at controlled room temperature.
- **USP REFERENCE STANDARDS (11).**
[USP Naproxen RS](#)
[USP Terazosin Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TERAZOSIN TABLETS	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 43(2)

Current DocID: GUID-0E199865-0E5B-48D1-843D-401F415AA6DB_2_en-US

DOI: https://doi.org/10.31003/USPNF_M80842_02_01

DOI ref: y5lj1