

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Oct-2022
Document Type: USP Monographs
DocId: GUID-85FAFE40-1A4E-41BF-AD30-52BFD36D0958_4_en-US
DOI: https://doi.org/10.31003/USPNF_M80838_04_01
DOI Ref: 9exw3

© 2025 USPC
Do not distribute

Terazosin Capsules

DEFINITION

Terazosin Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of $C_{19}H_{25}N_5O_4 \cdot HCl$, calculated as the free base.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Ultraviolet-Visible Spectroscopy](#): 197U

Diluent: 0.1 N [hydrochloric acid](#)

Standard solution: 0.005 mg/mL of terazosin hydrochloride from [USP Terazosin Hydrochloride RS](#) in *Diluent*. Sonicate for 10 min to completely dissolve. Pass the solution through a nylon filter of 0.45- μ m pore size.

Sample solution: Combine the contents from 20 Capsules and transfer 10 mg into a 100-mL flask. Fill with *Diluent* to 50% of the volume of the flask. Sonicate the flask for 10 min. Allow it to cool to room temperature. Dilute with *Diluent* to volume. Further dilute 5 mL of this solution with *Diluent* to 100 mL, and mix well. Pass 10 mL of this preparation through a PTFE filter with a 0.45- μ m pore size.

Blank: Pass the *Diluent* through a PTFE filter of 0.45- μ m pore size.

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

- **PROCEDURE**

[NOTE—Use an all-glass syringe.]

Hydrochloric acid solution: Prepare ▲0.01 N methanolic hydrochloric acid ▲ (ERR 1-Oct-2022) by adding 0.85 mL of [hydrochloric acid](#) to 1 L of [methanol](#).

Diluent: [Hydrochloric acid solution](#) and [water](#) (2:3)

Mobile phase: [Acetonitrile](#) and [water](#) (7:3). Pass through a nylon filter of 0.45- μ m pore size. Add 10 mL/L of [glacial acetic acid](#), and degas. After degassing, pipet 0.20 mL/L of [diethylamine](#) into the solution, and mix.

Standard stock solution: 0.55 mg/mL of terazosin hydrochloride from [USP Terazosin Hydrochloride RS](#) in *Diluent*. Sonicate for 5 min to completely dissolve.

Standard solution: 0.055 mg/mL of terazosin hydrochloride in *Diluent* from *Standard stock solution*. Pass through a PTFE filter of 0.45- μ m pore size, discarding NLT the first 8 mL of filtrate.

Sample solution: Combine the contents of NLT 20 Capsules and weigh a quantity equivalent to 10 mg of terazosin into a 200-mL flask. Add 100 mL of *Diluent*, and sonicate for NLT 10 min. Shake the flask mechanically for NLT 10 min. Repeat until the sample is well dispersed. Allow the solution to cool, and dilute with *Diluent* to volume. Pass through a PTFE filter of 0.45- μ m pore size, discarding the first 8 mL of filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing [L1](#)

Flow rate: 2.5 mL/min

Injection volume: 25 μ L

Run time: NLT twice the retention time of the terazosin peak

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 1.8 for the terazosin peak

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of terazosin ($C_{19}H_{25}N_5O_4$), based on the label claim, in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

r_u = peak response of terazosin from the *Sample solution*

r_s = peak response of terazosin from the *Standard solution*

C_s = concentration of terazosin hydrochloride in the *Standard solution* (mg/mL)

C_u = nominal concentration of terazosin in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of terazosin, 387.43

M_{r2} = molecular weight of terazosin hydrochloride, 423.89

Acceptance criteria: 90.0%–110.0%, calculated as the free base

PERFORMANCE TESTS**• Dissolution (711)****Test 1**

Medium: [Water](#); 900 mL

Apparatus 2: 50 rpm, with sinkers, if necessary

Time: 60 min

Standard solution: $(387.44/423.89)(L/900)$ mg/mL of [USP Terazosin Hydrochloride RS](#) in *Medium*, where L is the Capsule label claim (terazosin), in mg

Sample solution: At the designated time, withdraw 20 mL of the solution under test, and centrifuge at NMT 3000 rpm for 20 min.

Capsule blank solution: Dissolve 10 empty Capsule shells in 900 mL of *Medium* heated to 37°. Centrifuge a portion of this solution for 20 min.

Spectrometric conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: UV 246 nm

Cell length: 5 cm for Capsules labeled to contain 1 mg; 1 cm for Capsules labeled to contain 2 or 5 mg; 0.5 cm for Capsules labeled to contain 10 mg

Blank: *Medium*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of terazosin dissolved:

$$\text{Result} = \{[A_u - (A_b/10)]/A_s\} \times C_s/L \times V \times 100$$

A_u = absorbance of the *Sample solution*

A_b = absorbance of the *Capsule blank solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of terazosin in the *Standard solution* (mg/mL)

L = terazosin label claim (mg/Capsule)

V = volume of *Medium*, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of terazosin is dissolved.

Test 2: If the product complies with this test, the labeling indicates that the product meets USP *Dissolution Test 2*.

Medium: [Water](#); 900 mL

Apparatus 2: 50 rpm, with wire helix sinker.

Time: 30 min

0.1 M phosphate buffer: 13.6 g/mL of [monobasic potassium phosphate](#) and 4 mL/L of [triethylamine](#) in [water](#). Adjust with [phosphoric acid](#) to a pH of 2.5 ± 0.05 .

Mobile phase: [Acetonitrile](#) and **0.1 M phosphate buffer** (1:3)

Standard solution: (387.44/423.89)(L/900) mg/mL of [USP Terazosin Hydrochloride RS](#) in *Medium*, where L is the Capsule label claim (terazosin), in mg

Sample solution: Pass a portion of the solution under test through a suitable filter of 0.45- μm pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 246 nm

Column: 3.9-mm \times 30-cm; 10- μm packing [L11](#)

Flow rate: 1.0 mL/min

Injection volume: 50 μL

System suitability

Sample: Standard solution

Suitability requirements

Relative standard deviation: NMT 2.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of terazosin dissolved:

$$\text{Result} = (r_U/r_S) \times (C_S/L) \times V \times 100$$

r_U = peak response from the Sample solution

r_S = peak response from the Standard solution

C_S = concentration of terazosin in the Standard solution (mg/mL)

L = terazosin label claim (mg/Capsule)

V = volume of Medium, 900 mL

Tolerances: NLT 80% (Q) of the labeled amount of terazosin is dissolved.

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

IMPURITIES

ORGANIC IMPURITIES

- **PROCEDURE**

Buffer: Dissolve 4.1 g of [monobasic potassium phosphate](#) and 1.1 g of [sodium 1-heptanesulfonate monohydrate](#) in 950 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 3.0 ± 0.10 . Dilute with [water](#) to 1 L. Pass through a nylon filter of 0.45- μm pore size.

Mobile phase: [Acetonitrile](#) and **Buffer** (6:19)

Standard solution: 0.003 mg/mL of terazosin hydrochloride from [USP Terazosin Hydrochloride RS](#) in *Mobile phase*

Sample solution: Transfer 15 mg of terazosin from the contents of 20 Capsules into a 50-mL volumetric flask. Dilute with *Mobile phase* to approximately half the volume of the flask. Sonicate for NLT 10 min, and shake the flask for NLT 20 min. Dilute with *Mobile phase* to volume, and pass through a nylon or Teflon filter of 0.45- μm pore size, discarding the first 5 mL of filtrate. The final concentration of the *Sample solution* is 0.3 mg/mL.

Sensitivity solution: 0.15 $\mu\text{g}/\text{mL}$ of [USP Terazosin Hydrochloride RS](#) in *Mobile phase* from the *Standard solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 246 nm

Column: 4.6-mm \times 25-cm; 5- μm packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 10 μL

Run time: NLT 1.2 times the retention time of terazosin for the *Standard solution* and *Sensitivity solution*; NLT 4.5 times the retention time of terazosin in the *Sample solution*

System suitability

Samples: Standard solution and Sensitivity solution

Capacity factor, k' : NLT 1.0 for the terazosin peak, *Standard solution***Tailing factor:** NMT 2.0 for the terazosin peak, *Standard solution***Relative standard deviation:** NMT 2.0%, *Standard solution***Signal-to-noise ratio:** NLT 10 for the terazosin peak, *Sensitivity solution***Analysis****Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of each impurity in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times (M_{r1}/M_{r2}) \times 100$$

 r_u = peak response of each individual impurity from the *Sample solution* r_s = peak response of terazosin from the *Standard solution* C_s = concentration of terazosin hydrochloride in the *Standard solution* (mg/mL) C_u = nominal concentration of terazosin in the *Sample solution* (mg/mL) F = relative response factor (see [Impurity Table 1](#)) M_{r1} = molecular weight of terazosin, 387.43 M_{r2} = molecular weight of terazosin hydrochloride, 423.89**Acceptance criteria:** See [Impurity Table 1](#).**Impurity Table 1**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Piperazinyl-ADM a	0.52	1.1	0.4
Chloro ADM b	1.37	1.2	0.4
Bis-ADMQ-piperazine c	3.85	1.0	0.4
Any other individual, unspecified impurity	—	—	0.2
Total impurities	—	—	1.2

a *N*-(4-Amino-6,7 dimethoxy-2-quinazolinyl)piperazine.**b** 2-Chloro-4-amino-6,7 dimethoxy-2-quinazoline.**c** *N,N*-Bis-(4-amino-6,7 dimethoxy-2-quinazolinyl)piperazine.**ADDITIONAL REQUIREMENTS**

- PACKAGING AND STORAGE:** Preserve in well-closed containers protected from moisture and light. Store at controlled room temperature.
- LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.
- USP REFERENCE STANDARDS (11).**
[USP Terazosin Hydrochloride RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TERAZOSIN CAPSULES	Documentary Standards Support	SM22020 Small Molecules 2

Topic/Question	Contact	Expert Committee
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 36(3)

Current DocID: GUID-85FAFE40-1A4E-41BF-AD30-52BFD36D0958_4_en-US

DOI: https://doi.org/10.31003/USPNF_M80838_04_01

DOI ref: 9exw3

OFFICIAL