

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Aug-2024
Document Type: USP Monographs
DocId: GUID-8D3F48BD-D274-47B0-960F-C80370F27EEA_4_en-US
DOI: https://doi.org/10.31003/USPNF_M80783_04_01
DOI Ref: 8burh

© 2025 USPC
Do not distribute

Technetium Tc 99m Sestamibi Injection

Technetium(1+)-^{99m}Tc, hexakis(1-isocyano-2-methoxy-2-methylpropane)-, (OC-6-11)-;

Hexakis(2-methoxy-2-methylpropyl isocyanide)[^{99m}Tc]technetium(1+)

CAS RN®: 109581-73-9; UNII: 971Z4W1S09.

DEFINITION

Technetium Tc 99m Sestamibi Injection is a sterile, aqueous solution of tetrakis (2-methoxy-isobutyl isonitrile) copper (I) tetrafluoroborate that is labeled with radioactive technetium (^{99m}Tc) suitable for intravenous administration. It contains NLT 90% and NMT 110% of the labeled amount of ^{99m}Tc as a complex with sestamibi, expressed in megabecquerels (or in millicuries) per milliliter at the time indicated in the labeling. Other chemical forms of radioactivity are NMT 10% of the total radioactivity. It contains reducing agents, a buffer, and an inert filler.

IDENTIFICATION

• A. RADIONUCLIDIC IDENTITY

(See [Radioactivity \(821\), Identification of Radionuclides](#).)

Acceptance criteria: Its gamma-ray spectrum is identical to that of a specimen of ^{99m}Tc that exhibits a major photopeak having an energy of 0.140 MeV.

Add the following:

▲ B. RADIOCHEMICAL IDENTITY

Analysis: Examine the radiochromatograms obtained in the test for *Radiochemical Purity, Procedure 2*.

Acceptance criteria: The distribution of the radioactivity contributes to the identification of the preparation.▲ (USP 1-Aug-2024)

ASSAY

• RADIOACTIVE CONCENTRATION (STRENGTH)

(See [Radioactivity \(821\), Assay of Radionuclides](#).)

Analysis: Using a suitable counting assembly, determine the radioactivity, in megabecquerels (or in millicuries) per milliliter, of the Injection by use of a calibrated system.

Acceptance criteria: 90%–110% of the labeled amount of ^{99m}Tc at the time indicated in the labeling

PURITY

• RADIONUCLIDIC PURITY

(See [Radioactivity \(821\)](#).)

Analysis: Using a suitable counting assembly, determine the radioactivity of each radionuclidic impurity, in kilobecquerels per megabecquerel (microcuries per millicurie) of technetium 99m in the Injection by use of a calibrated system.

Acceptance criteria

For Injection prepared from technetium 99m derived from parent molybdenum 99 formed as a result of neutron bombardment of stable molybdenum: See [Table 1](#).

For Injection prepared from technetium 99m derived from parent molybdenum 99 formed as a result of uranium fission—gamma- and beta-emitting impurities: See [Table 2](#).

Table 1

Radionuclidic Impurity	Most Prominent Photopeaks	Half-Life	Acceptance Criteria, NMT ^a
Molybdenum 99	0.181 MeV gamma 0.740 MeV gamma 0.780 MeV gamma	66.0 h	0.15 kBq/MBq (μ Ci/mCi)
Total of all other gamma-emitting radionuclidic impurities	—	—	0.5 kBq/MBq (μ Ci/mCi) ^b

^a Radioactivity of radionuclidic impurity/radioactivity of Tc 99m per administered dose of Injection at the time of administration.

^b Does not exceed 92 kBq (2.5 μ Ci) per administered dose of the Injection at the time of administration.

Table 2

Radionuclidic Impurity	Most Prominent/Maximum Photopeaks	Half-Life	Acceptance Criteria, NMT ^a
Molybdenum 99	0.181 MeV gamma 0.740 MeV gamma 0.780 MeV gamma	66.0 h	0.15 kBq/MBq (μ Ci/mCi)
Iodine 131	0.364 MeV	8.08 d	0.05 kBq/MBq (μ Ci/mCi)
Ruthenium 103	0.497 MeV	39.5 d	0.05 kBq/MBq (μ Ci/mCi)
Strontium 89 ^b	1.463 MeV beta	52.7 d	0.0006 kBq/MBq (μ Ci/mCi)
Strontium 90 ^b	0.546 MeV beta	27.7 y	0.00006 kBq/MBq (μ Ci/mCi)
Gross alpha impurity	—	—	0.001 Bq/MBq (n Ci/mCi)
All other beta- and gamma-emitting radionuclidic impurities	—	—	0.01%

^a Radioactivity of radionuclidic impurity/radioactivity of Tc 99m present at the time of administration.

^b Use a counting system appropriate for the detection of particulate radiations.

• RADIOCHEMICAL PURITY

Procedure 1

Sample solution: Constitute each of four vials with 1 mL (1875 ± 187.5 MBq, or 50 ± 5 mCi) of Sodium Pertechnetate Tc 99m Injection.

Heat the vials in boiling water for 10 min. After heating, allow the vials to cool to room temperature for 15 min.

Chromatographic system

(See [Chromatography \(621\)](#), [General Procedures](#), [Thin-Layer Chromatography](#).)

Mode: TLC

Adsorbent: 25-mm \times 7.75-cm reverse-phase chromatographic plate

Application volume: 1–2 μ L of Injection

Developing solvent system: Acetonitrile, methanol, tetrahydrofuran, and 3.85% ammonium acetate (40:30:10:20). [NOTE—The Developing solvent system should be freshly prepared (NMT 4 h before use).]

Analysis: Apply the *Sample solution* about 1 cm from the bottom of the *Adsorbent*, and allow to dry. Position the plate in a chromatographic chamber and develop the chromatograms until the solvent front has moved 6 cm from the origin. Remove the plate and allow it to air-dry. Determine the radioactivity distribution by scanning the chromatogram with a suitable radiation detector.

Acceptance criteria: A mean of NLT 90% (area %) of the radioactivity is found at an R_F of 0.3–0.6. Free pertechnetate is located at an R_F of 0.8–1.0, and radio-colloid is located at an R_F of 0–0.1. The sum of the mean percentages of free pertechnetate and colloid is NMT 10%.

Procedure 2

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Mobile phase: Methanol, 0.05 M ammonium sulfate solution, and acetonitrile (45:35:20)

Detector: Gamma-ray detector

Column: 3.9-mm \times 30-cm; 10- μ m packing L1

Flow rate: 2 mL/min

Injection volume: About 5 μ L (9.375 MBq or 250 μ Ci)

Retention times: 99m Tc pentamibi dimethylvinyl isonitrile is 6–13 min; 99m Tc sestamibi is 5–10 min

Analysis

[NOTE—If 99m Tc pentamibi dimethylvinyl isonitrile is present, the relative retention between the 99m Tc sestamibi peak and the 99m Tc pentamibi dimethylvinyl isonitrile peak is 1.3 to 1.5.]

Inject Sodium Pertechnetate Tc 99m Injection into the chromatograph, and adjust the integrator/recording device so that the peak is 25%–100% of full scale. Separately inject equal volumes of the injection. Record the chromatograms, and measure the area percentage for all of the peaks present.

The retention time for 99m Tc sestamibi is 5–10 min and the retention time for 99m Tc pentamibi dimethylvinyl isonitrile is 6–13 min.

Correct for the presence of colloid, which is not measured by this procedure, as follows:

$$C_f = [(100\%) - (A_c)]/100$$

C_f = correction factor

A_c = mean area percentage for the colloid obtained from the *Radiochemical Purity, Procedure 1* test

Obtain the corrected area percentage by multiplying the correction factor (C_f) by the area percentage of the peaks present in the chromatogram.

Acceptance criteria: A mean of NLT 90% (corrected area percentage) of the total radioactivity is represented by 99m Tc sestamibi, and a mean of NMT 5% (corrected area percentage) of the total radioactivity is present as 99m Tc pentamibi dimethylvinyl isonitrile.

SPECIFIC TESTS

Add the following:

▲ • **APPEARANCE:** Clear, colorless solution, free from visible particulates▲ (USP 1-Aug-2024)

• [pH \(791\)](#): 5.0–6.0

Change to read:

• [BACTERIAL ENDOTOXINS TEST \(85\)](#): ▲Meets the requirements. The Injection may be distributed or dispensed prior to completion of the test.▲ (USP 1-Aug-2024)

Add the following:

▲ • [STERILITY TESTS \(71\)](#): Meets the requirements. The Injection may be distributed or dispensed prior to completion of the test.▲ (USP 1-Aug-2024)

Delete the following:

▲ • [OTHER REQUIREMENTS](#)▲ (USP 1-Aug-2024)

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in single-dose or multiple-dose containers.

• **LABELING:** Label the Injection to include the following, in addition to the information specified under [Labeling \(7\), Labels and Labeling for Injectable Products](#): the time and date of constitution; the volume of constitution; the amount of ^{99m}Tc as labeled sestamibi expressed as total begabecquerels (or millicuries) per milliliter at the time of constitution; the expiration date and time; the lot number; and the statement: [CAUTION –Radioactive Material]. The labeling indicates that, in making dosage calculations, correction is to be made for radioactive decay, and also indicates that the radioactive half-life of ^{99m}Tc is 6.0 h.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TECHNETIUM TC 99M SESTAMIBI INJECTION	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 49(1)

Current DocID: GUID-8D3F48BD-D274-47B0-960F-C80370F27EEA_4_en-US

DOI: https://doi.org/10.31003/USPNF_M80783_04_01

DOI ref: 8burh