


Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2024
Document Type: USP Monographs
DocId: GUID-9DA69681-C211-4E27-A7F9-861210180F8B_4_en-US
DOI: https://doi.org/10.31003/USPNF_M80695_04_01
DOI Ref: gp22r

© 2025 USPC
Do not distribute

Technetium Tc 99m Mertiatide Injection

Technetate(2-)- ^{99m}Tc ,[N-[N-[N-(mercaptoacetyl)-glycyl]glycyl]glycinato(5)-N,N',N",S]-oxo-, disodium, (SP-5-25)-;

Disodium [N-[N-[N-(mercaptoacetyl)glycyl]glycyl]glycyl]glycinato (5)-N,N',N",S]-oxo-[^{99m}Tc]technetate(V)

CAS RN®: 125224-05-7.

DEFINITION

Technetium Tc 99m Mertiatide Injection is a sterile, aqueous solution, suitable for intravenous injection, that contains radioactive technetium (^{99m}Tc) in the form of a chelate of mertiatide. It contains NLT 90.0% and NMT 110.0% of the labeled amount of ^{99m}Tc as mertiatide complex expressed in megabecquerels (millicuries or microcuries) per milliliter at the date and time indicated in the labeling. It contains uncomplexed betiataide, a suitable ^{99m}Tc reducing agent, a transfer ligand, and stabilizers.

IDENTIFICATION

• A. RADIONUCLIDIC IDENTITY

(See [Radioactivity \(821\), Identification of Radionuclides](#).)

Acceptance criteria: Its gamma-ray spectrum is identical to that of a specimen of ^{99m}Tc that exhibits a major photopeak having an energy of 0.140 MeV.

Add the following:

▲ B. RADIOCHEMICAL IDENTITY

Analysis: After completing the Analysis for Procedure 2 (*Simultaneous determination of free pertechnetate and ^{99m}Tc mertiatide*) in the *Radiochemical Purity* test, examine the radiochromatograms obtained.

Acceptance criteria: The chromatogram shows the retention time of the major peak obtained with the *Sample solution* is between 10 and 14 min. ▲ (USP 1-Dec-2024)

ASSAY

• RADIOACTIVE CONCENTRATION (STRENGTH)

(See [Radioactivity \(821\), Assay of Radionuclides](#).)

Analysis: Using a suitable counting assembly, determine the radioactivity, in megabecquerels (or millicuries) per milliliter, of the Injection by use of a calibrated system.

Acceptance criteria: 90.0%–110.0% of the labeled amount of ^{99m}Tc at the date and time indicated in the labeling

PURITY

• RADIONUCLIDIC PURITY

(See [Radioactivity \(821\)](#).)

Analysis: Using a suitable counting assembly, determine the radioactivity of each radionuclidic impurity, in kilobecquerels per megabecquerel (microcuries per millicurie) of technetium 99m, in the Injection by use of a calibrated system.

Acceptance criteria

For Injection prepared from technetium 99m derived from parent molybdenum 99 formed as a result of neutron bombardment of stable molybdenum: See [Table 1](#).

For Injection prepared from technetium 99m derived from parent molybdenum 99 formed as a result of uranium fission—gamma- and beta-emitting impurities: See [Table 2](#).

Table 1

Radionuclidic Impurity	Most Prominent Photopeaks	Half-Life	Acceptance Criteria, NMT ^a
Molybdenum 99	0.181 MeV gamma 0.740 MeV gamma 0.780 MeV gamma	66.0 h	0.15 kBq/MBq (μ Ci/mCi)
Total of all other gamma-emitting radionuclidic impurities	—	—	0.5 kBq/MBq (μ Ci/mCi) ^b

^a Radioactivity of radionuclidic impurity/radioactivity of Tc 99m per administered dose of the Injection at the time of administration.

^b Does not exceed 92 kBq (2.5 μ Ci) per administered dose of the Injection at the time of administration.

Table 2

Radionuclidic Impurity	Most Prominent/Maximum Photopeaks	Half-Life	Acceptance Criteria, NMT ^a
Molybdenum 99	0.181 MeV gamma 0.740 MeV gamma 0.780 MeV gamma	66.0 h	0.15 kBq/MBq (μ Ci/mCi)
Iodine 131	0.364 MeV	8.08 d	0.05 kBq/MBq (μ Ci/mCi)
Ruthenium 103	0.497 MeV	39.5 d	0.05 kBq/MBq (μ Ci/mCi)
Strontium 89 ^b	1.463 MeV beta	52.7 d	0.0006 kBq/MBq (μ Ci/mCi)
Strontium 90 ^b	0.546 MeV beta	27.7 y	0.00006 kBq/MBq (μ Ci/mCi)
Gross alpha impurity	—	—	0.001 Bq/MBq (n Ci/mCi)
All other beta- and gamma-emitting radionuclidic impurities	—	—	0.01%

^a Radioactivity of radionuclidic impurity/radioactivity of Tc 99m present at the time of administration.

^b Use a counting system appropriate for the detection of particulate radiations.

• **RADIOCHEMICAL PURITY**

Procedure 1 (Determination of hydrolyzed reduced technetium)

Chromatographic system

(See [Chromatography \(621\), General Procedures, Paper Chromatography](#).)

Mode: Paper chromatography

Adsorbent: 25-mm × 20-cm strip of chromatographic paper

Application volume: About 5–10 μ L (100–250 μ Ci)

Developing solvent system: [Acetonitrile](#) and [water](#) (60:40)

Analysis: Place the Injection 15 mm from the bottom of the *Adsorbent*. Immediately develop the chromatogram by ascending chromatography using the *Developing solvent system* until the solvent front has moved about 13 cm from the origin. Remove the strip, and allow to dry. Determine the radioactivity distribution by scanning the chromatogram using a suitable collimated radiation detector. Calculate the percentage of hydrolyzed reduced technetium:

$$\text{Result} = (A_{ht}/B_s) \times 100$$

A_{ht} = sum of all the peaks at or near the origin, where R_F is less than 0.25

B_s = sum of all of the peaks

Acceptance criteria: NMT 2.0%

Procedure 2 (Simultaneous determination of free pertechnetate and ^{99m}Tc mertiatide)

Solution A: 1.36 g/L of [monobasic potassium phosphate](#) in [water](#). To each liter of this solution add 1.0 mL of [triethylamine](#), and adjust with 1.0 N [hydrochloric acid](#) to a pH between 4.9 and 5.1.

Solution B: 1.36 g/L of [monobasic potassium phosphate](#) prepared as follows. Transfer a suitable amount of [monobasic potassium phosphate](#) to 900 mL of [water](#), and add 100 mL of [tetrahydrofuran](#) to obtain a solution containing 1.36 g per L. To each liter of this solution, add 1.0 mL of [triethylamine](#), and adjust with 1.0 N [hydrochloric acid](#) to a pH between 4.9 and 5.1.

Mobile phase: See [Table 3](#). Before injection, equilibrate the system for 15 min with a *Mobile phase* consisting of a mixture of 90% *Solution A* and 10% *Solution B*.

Table 3

Time (min)	Solution A (%)	Solution B (%)
0	90	10
30	20	80
35	20	80
40	90	10

Sample solution: Immediately before testing, dilute a portion of the Injection with Water for Injection to obtain a concentration between 400 and 600 μCi . [NOTE—The extent to which the sample is diluted is determined by the sensitivity of the radiometric detector.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Gamma-ray detector

Column: 3.9-mm \times 15-cm; packing [L1](#)

Flow rate: 1 mL/min

Injection volume: 20 μL

Analysis

[NOTE—The retention times for ^{99m}Tc pertechnetate and ^{99m}Tc mertiatide are 1.8–2.2 min and 10–14 min respectively.]

Calculate the percentage of ^{99m}Tc pertechnetate:

$$\text{Result} = (r_{pt}/r_s) \times 100$$

r_{pt} = peak response of ^{99m}Tc pertechnetate

r_s = sum of all peak responses

Calculate the percentage of ^{99m}Tc mertiatide:

$$\text{Result} = (r_{mt}/r_s) \times 100$$

r_{mt} = peak response of ^{99m}Tc mertiatide

$$r_s' = \text{sum of all peak responses}$$

Acceptance criteria

- 99mTc pertechnetate:** NMT 6.0%
- 99mTc mertiatide:** NLT 90.0%

SPECIFIC TESTS

Add the following:

- ▲ **APPEARANCE:** Clear, colorless solution, free from visible particulates▲ (USP 1-Dec-2024)
- **pH (791):** 5.0–6.0

Change to read:

- **BACTERIAL ENDOTOXINS TEST (85):** ▲Meets the requirements. The Injection may be distributed or dispensed prior to completion of the test.▲ (USP 1-Dec-2024)

Add the following:

- ▲ **STERILITY TESTS (71):** Meets the requirements. The Injection may be distributed or dispensed prior to completion of the test.▲ (USP 1-Dec-2024)

Delete the following:

- ▲ **OTHER REQUIREMENTS**▲ (USP 1-Dec-2024)

ADDITIONAL REQUIREMENTS

- PACKAGING AND STORAGE:** Preserve in single-dose or multiple-dose containers.
- LABELING:** Label the Injection to include the following, in addition to the information specified under [Labeling \(7\), Labels and Labeling for Injectable Products](#): the time and date of calibration; the amount of ^{99m}Tc as labeled mertiatide expressed as total megabecquerels (or millicuries) and the concentration as megabecquerels per milliliter (or as millicuries per milliliter) on the date and time of calibration; the expiration date and time; and the statement: [CAUTION—Radioactive Material]. The labeling indicates that, in making dosage calculations, correction is to be made for radioactive decay, and also indicates that the radioactive half-life of ^{99m}Tc is 6.0 h.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
TECHNETIUM TC 99M MERTIATIDE INJECTION	Documentary Standards Support	SM42020 Small Molecules 4
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 49(1)

Current DocID: [GUID-9DA69681-C211-4E27-A7F9-861210180F8B_4_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M80695_04_01

DOI ref: [gp22r](#)