


Status: Currently Official on 16-Feb-2025  
Official Date: Official as of 01-Dec-2024  
Document Type: USP Monographs  
DocId: GUID-1F7E59E6-7BC8-4A59-A8F4-BDF94B5394BF\_4\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M80600\\_04\\_01](https://doi.org/10.31003/USPNF_M80600_04_01)  
DOI Ref: zvyaw

© 2025 USPC  
Do not distribute

## Technetium Tc 99m Bicisate Injection



### DEFINITION

Technetium Tc 99m Bicisate Injection is a sterile, clear, colorless solution, suitable for intravenous administration, of bicisate dihydrochloride complexed to radioactive technetium ( $^{99m}\text{Tc}$ ). It contains NLT 90.0% and NMT 110.0% of the labeled amount of  $^{99m}\text{Tc}$  as a complex with bicisate, expressed in megabecquerels (or in millicuries) per milliliter at the time indicated in the labeling. Other chemical forms of radioactivity are NMT 10% of the total radioactivity.

### IDENTIFICATION

- **A. RADIONUCLIDIC IDENTITY**

(See [Radioactivity \(821\), Identification of Radionuclides](#).)

**Acceptance criteria:** Its gamma-ray spectrum is identical to that of a specimen of  $^{99m}\text{Tc}$  that exhibits a major photopeak having an energy of 0.140 MeV.

**Add the following:**

- ▲ **B. RADIOCHEMICAL IDENTITY**

**Acceptance criteria:** The retardation factors of the spots for Tc 99m bicisate and/or Tc(IV) 99m bicisate in the chromatogram of the *Sample* correspond with the ranges stated in the test for *Radiochemical Impurities*. ▲ (USP 1-Dec-2024)

### ASSAY

- **RADIOACTIVE CONCENTRATION (STRENGTH)**

(See [Radioactivity \(821\), Assay of Radionuclides](#).)

**Analysis:** Using a suitable counting assembly, determine the radioactivity, in megabecquerels (or millicuries) per milliliter, of the Injection by use of a calibrated system.

**Acceptance criteria:** 90.0%–110.0% of the labeled amount of  $^{99m}\text{Tc}$  at the time indicated in the labeling

### PURITY

- **RADIONUCLIDIC PURITY**

(See [Radioactivity \(821\)](#).)

**Analysis:** Using a suitable counting assembly, determine the radioactivity of each radionuclidic impurity, in kilobecquerels per megabecquerel (microcuries per millicurie) of technetium 99m, in the Injection by use of a calibrated system.

**Acceptance criteria**

**For Injection prepared from technetium 99m derived from parent molybdenum 99 formed as a result of neutron bombardment of stable molybdenum:** See [Table 1](#).

**For Injection prepared from technetium 99m derived from parent molybdenum 99 formed as a result of uranium fission—gamma- and beta-emitting impurities:** See [Table 2](#).

Table 1

| Radionuclidic Impurity                                     | Most Prominent Photopeaks                             | Half-Life | Acceptance Criteria, NMT <sup>a</sup>    |
|------------------------------------------------------------|-------------------------------------------------------|-----------|------------------------------------------|
| Molybdenum 99                                              | 0.181 MeV gamma<br>0.740 MeV gamma<br>0.780 MeV gamma | 66.0 h    | 0.15 kBq/MBq ( $\mu$ Ci/mCi)             |
| Total of all other gamma-emitting radionuclidic impurities | —                                                     | —         | 0.5 kBq/MBq ( $\mu$ Ci/mCi) <sup>b</sup> |

<sup>a</sup> Radioactivity of radionuclidic impurity/radioactivity of Tc 99m per administered dose of Injection at the time of administration.

<sup>b</sup> Does not exceed 92 kBq (2.5  $\mu$ Ci) per administered dose of the Injection at the time of administration.

**Table 2**

| Radionuclidic Impurity                                      | Most Prominent/Maximum Photopeaks                     | Half-Life | Acceptance Criteria, NMT <sup>a</sup> |
|-------------------------------------------------------------|-------------------------------------------------------|-----------|---------------------------------------|
| Molybdenum 99                                               | 0.181 MeV gamma<br>0.740 MeV gamma<br>0.780 MeV gamma | 66.0 h    | 0.15 kBq/MBq ( $\mu$ Ci/mCi)          |
| Iodine 131                                                  | 0.364 MeV                                             | 8.08 d    | 0.05 kBq/MBq ( $\mu$ Ci/mCi)          |
| Ruthenium 103                                               | 0.497 MeV                                             | 39.5 d    | 0.05 kBq/MBq ( $\mu$ Ci/mCi)          |
| Strontium 89 <sup>b</sup>                                   | 1.463 MeV beta                                        | 52.7 d    | 0.0006 kBq/MBq ( $\mu$ Ci/mCi)        |
| Strontium 90 <sup>b</sup>                                   | 0.546 MeV beta                                        | 27.7 y    | 0.00006 kBq/MBq ( $\mu$ Ci/mCi)       |
| Gross alpha impurity                                        | —                                                     | —         | 0.001 Bq/MBq (nCi/mCi)                |
| All other beta- and gamma-emitting radionuclidic impurities | —                                                     | —         | 0.01%                                 |

<sup>a</sup> Radioactivity of radionuclidic impurity/radioactivity of Tc 99m present at the time of administration.

<sup>b</sup> Use a counting system appropriate for the detection of particulate radiations.

**Change to read:**

• **RADIOCHEMICAL PURITY**

**Sample solution:** Prepare four vials of Injection and perform the test on each vial.

**Chromatographic system**

(See [Chromatography \(621\), General Procedures, Thin-Layer Chromatography](#).)

**Mode:** TLC

**Adsorbent:** 2.5-cm  $\times$  7.5-cm chromatographic silica gel sheet

**Application volume:** About 5  $\mu$ L

**Developing solvent system:** [Ethyl acetate](#)

**Analysis**

**Sample:** ▲The *Sample solution* used to perform this test is also used to perform the test for *Radiochemical Impurities*. Perform the tests in parallel with a minimal delay in spotting of the chromatographic media following the 30-min Injection incubation period.▲ (USP 1-Dec-2024)

Place the *Sample solution* about 2 cm from the bottom of the *Adsorbent* and allow to dry for 5–10 min. Position the plate in a pre-equilibrated chromatographic chamber containing the *Developing solvent system*, and develop the chromatogram until the solvent front has moved 5 cm from the origin. Remove the plate from the chamber, and allow to dry. Cut the chromatographic sheet 4.5 cm from the

bottom. Separately count the activity on each piece in a dose calibrator or a gamma counter. The activity on the upper portion contains the  $^{99m}\text{Tc}$  bicisate complex, and the activity on the lower section contains all radioimpurities.

Calculate the percentage of radiochemical purity of the Injection taken:

$$\text{Result} = 100P/(P + C)$$

$P$  = count from the top part of the sheet

$C$  = count from the bottom part of the sheet

**Acceptance criteria:** NLT 90% of the total radioactivity is found as  $^{99m}\text{Tc}$  bicisate. Calculate the mean percentage of radiochemical purity of the four test vials.

## IMPURITIES

**Change to read:**

- **RADIOCHEMICAL IMPURITIES**

▲ (USP 1-Dec-2024)

### Chromatographic system

(See [Chromatography \(621\), General Procedures, Thin-Layer Chromatography.](#))

**Mode:** TLC

**Adsorbent:** 2.5-cm  $\times$  7.5-cm reverse-phase thin-layer chromatographic plate (or equivalent)

**Developing solvent system:** [Acetone](#) and 0.5 M [ammonium acetate](#) (60:40)

**Application volume:** About 2  $\mu\text{L}$

### Analysis

**Sample:** *Sample solution* used to perform the test for *Radiochemical Purity*. Perform the tests in parallel with a minimal delay in spotting of the chromatographic media following the 30-min *Injection* incubation period.

Apply the *Sample* 1 cm from the bottom of the *Adsorbent*, and allow the spot to air-dry thoroughly. Develop the chromatogram until the solvent front has moved 7 cm from the origin. Remove the plate from the chamber and air-dry. Using a suitable calibrated scanner, determine the compounds present by calculating the retention factors for all peaks present. Compounds and approximate  $R_F$  values are shown in [Table 3](#).

**Table 3**

| Compound                                                             | Approximate $R_F$ Value |
|----------------------------------------------------------------------|-------------------------|
| $^{99m}\text{Tc}$ bicisate                                           | 0.15–0.44               |
| $^{99m}\text{Tc}(\text{IV})$ bicisate                                | 0.3–0.4                 |
| $^{99m}\text{Tc}$ bicisate and $^{99m}\text{Tc}(\text{IV})$ bicisate | 0.15–0.44               |
| Hydrolyzed reduced Tc                                                | 0.00–0.14               |
| Free pertechnetate and $^{99m}\text{Tc}$ ethylene cisteinate monomer | 0.70–0.84               |
| $^{99m}\text{Tc}$ EDTA                                               | 0.95–1.0                |

Calculate the quantity of  $^{99m}\text{Tc}(\text{IV})$  ligand in the *Injection* by subtracting the  $^{99m}\text{Tc}$  bicisate percentage obtained in the test for *Radiochemical Purity* from the combined  $^{99m}\text{Tc}$  bicisate and  $^{99m}\text{Tc}(\text{IV})$  bicisate area percentage obtained in the test for *Radiochemical Impurities*.

**Acceptance criteria:** The sum of the impurities is NMT 10%.

## SPECIFIC TESTS

**Add the following:**

- ▲ **APPEARANCE:** Clear, colorless solution, free from visible particulates ▲ (USP 1-Dec-2024)

Change to read:

- **BACTERIAL ENDOTOXINS TEST (85):** ▲ Meets the requirements. The Injection may be distributed or dispensed prior to completion of the test.▲ (USP 1-Dec-2024)

**Add the following:**

- ▲ • **STERILITY TESTS (71):** Meets the requirements. The Injection may be distributed or dispensed prior to completion of the test.▲ (USP 1-Dec-2024)

**Delete the following:**

- ▲ • **OTHER REQUIREMENTS**▲ (USP 1-Dec-2024)

#### **ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in single-dose or multiple-dose containers, at controlled room temperature.
- **LABELING:** Label the Injection to include the following, in addition to the information specified under *Labeling (7), Labels and Labeling for Injectable Products*: the time and date of calibration; the amount of <sup>99m</sup>Tc as labeled bicisate expressed as total megabecquerels (or millicuries) per milliliter at the time of calibration; the expiration date and time; the lot number; and the statement: [CAUTION—Radioactive Material]. The labeling indicates that, in making dosage calculations, correction is to be made for radioactive decay, and also indicates that the radioactive half-life of <sup>99m</sup>Tc is 6.0 h.

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question                       | Contact                                                                     | Expert Committee          |
|--------------------------------------|-----------------------------------------------------------------------------|---------------------------|
| TECHNETIUM TC 99M BICISATE INJECTION | <a href="#">Documentary Standards Support</a>                               | SM42020 Small Molecules 4 |
| REFERENCE STANDARD SUPPORT           | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM42020 Small Molecules 4 |

**Chromatographic Database Information:** [Chromatographic Database](#)

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 49(1)

**Current DocID: GUID-1F7E59E6-7BC8-4A59-A8F4-BDF94B5394BF\_4\_en-US**

**DOI:** [https://doi.org/10.31003/USPNF\\_M80600\\_04\\_01](https://doi.org/10.31003/USPNF_M80600_04_01)

**DOI ref:** [zvyaw](#)