

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2023
Document Type: NF Monographs
DocId: GUID-A6BD307B-9DD3-4BD3-B81D-E418AC8B79F1_3_en-US
DOI: https://doi.org/10.31003/USPNF_M78240_03_01
DOI Ref: afk36

© 2025 USPC
Do not distribute

Stearyl Alcohol

Change to read:

$C_{18}H_{38}O$ $\Delta 270.50$ Δ (CN 1-Dec-2023)

1-Octadecanol;

Octadecan-1-ol CAS RN®: 112-92-5.

DEFINITION

Stearyl Alcohol contains NLT 90.0% and NMT 102.0% of stearyl alcohol ($C_{18}H_{38}O$), the remainder consisting chiefly of related alcohols. It is obtained from sources of vegetable, animal, or synthetic origin.

IDENTIFICATION

• A. CHROMATOGRAPHIC IDENTITY

System suitability solution, Sample solution, and Analysis: Proceed as directed in the Assay.

Acceptance criteria: The retention time of the major peak of the *Sample solution*, excluding the solvent and internal standard peaks, corresponds to the stearyl alcohol peak of the *System suitability solution*.

ASSAY

[**NOTE**—If 1-pentadecanol is one of the related alcohols in stearyl alcohol derived from animal sources, the Assay and *Organic Impurity Test 1, Limit of Related Fatty Alcohols* are not suitable.]

• PROCEDURE

Internal standard solution: 1 mg/mL of [1-pentadecanol](#) (internal standard) in [ethanol](#)

System suitability solution: Prepare 1 mg/mL each of [USP Cetyl Alcohol RS](#), [USP Stearyl Alcohol RS](#), and [USP Oleyl Alcohol RS](#) in *Internal standard solution*. Heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well.

Standard solution: Prepare 1.0 mg/mL of [USP Stearyl Alcohol RS](#) in *Internal standard solution*, and heat the solution in a sealed container in a 50° water bath until stearyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Sample solution: Prepare 1.0 mg/mL of Stearyl Alcohol in *Internal standard solution*. Heat the solution in a sealed container in a 50° water bath until stearyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.25-mm \times 30-m fused silica capillary; coated with a 0.25- μ m layer of phase [G7](#)

Temperatures

Detector: 280°

Injection port: 270°

Column: See [Table 1](#).

Table 1

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
60	20	180	—
180	10	220	5

Carrier gas: Hydrogen

Flow rate: 2.0 mL/min, constant flow mode

Injection volume: 1 µL

Injection type: Split, split ratio, 100:1

Liner: Single taper, low pressure drop liner with deactivated wool

Run time: 15 min

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 2](#) for the relative retention times.]

Table 2

Component	Relative Retention Time
1-Pentadecanol (internal standard)	1.00
Cetyl alcohol	1.09
Stearyl alcohol	1.25
Oleyl alcohol	1.28

Suitability requirements

Resolution: NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl and oleyl alcohol peaks, *System suitability solution*

Tailing factor: 0.8–1.8 for the stearyl alcohol and 1-pentadecanol peaks, *Standard solution*

Relative standard deviation: NMT 1%, using the area ratio of stearyl alcohol to 1-pentadecanol, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of stearyl alcohol ($C_{18}H_{38}O$) in the portion of Stearyl Alcohol taken:

$$\text{Result} = (R_U/R_S) \times (C_S/C_U) \times 100$$

R_U = peak response ratio of stearyl alcohol to the internal standard from the *Sample solution*

R_S = peak response ratio of stearyl alcohol to the internal standard from the *Standard solution*

C_S = concentration of [USP Stearyl Alcohol RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Stearyl Alcohol in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–102.0%

IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%, determined on 2 g

[NOTE—On the basis of the manufacturing route, perform either *Organic Impurity Test 1* (vegetable or animal sources) or *Organic Impurity Test 2* (synthetic sources).]

- [ORGANIC IMPURITY TEST 1, LIMIT OF RELATED FATTY ALCOHOLS](#)

Solution A: 1 mg/mL of [1-pentadecanol](#) in [ethanol](#)

Resolution solution: Prepare 1 mg/mL each of [USP Lauryl Alcohol RS](#), [USP Myristyl Alcohol RS](#), [USP Cetyl Alcohol RS](#), [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linolenyl Alcohol RS](#), and [USP Arachidyl Alcohol RS](#) in *Solution A*. Heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well. Dilute the solution with [ethanol](#) to obtain a solution containing 0.05 mg/mL each of [USP Lauryl Alcohol RS](#), [USP Myristyl Alcohol RS](#), [USP Cetyl Alcohol RS](#), [1-pentadecanol](#), [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linolenyl Alcohol RS](#), and [USP Arachidyl Alcohol RS](#).

Sample solution: 1 mg/mL of Stearyl Alcohol in [ethanol](#). Heat the solution in a sealed container in a 50° water bath until stearyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Chromatographic system: Proceed as directed in the *Assay*, except for the split ratio.

Injection type: Split; split ratio, 5:1

System suitability

Sample: *Resolution solution*

[NOTE—See [Table 3](#) for the relative retention times.]

Table 3

Component	Relative Retention Time
Lauryl alcohol ^a	0.79
Myristyl alcohol ^a	0.93
1-Pentadecanol ^b	1.00
Cetyl alcohol ^a	1.09
Stearyl alcohol ^c	1.25
Oleyl alcohol ^a	1.28
Linolenyl alcohol ^a	1.36
Arachidyl alcohol ^a	1.44

^a Related linear chain fatty alcohol.

^b Internal standard.

^c Sample.

Suitability requirements

Resolution: NLT 15 between the myristyl alcohol and 1-pentadecanol peaks; NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl and oleyl alcohol peaks

Analysis

Samples: *Resolution solution* and *Sample solution*

Identify each related fatty alcohol peak in the *Sample solution* based on those in the *Resolution solution*.

Calculate the percentage of each related fatty alcohol or any unidentified impurity in the portion of Stearyl Alcohol taken:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = peak response of each related fatty alcohol (or any unidentified impurity) from the *Sample solution*

r_T = sum of all the peak responses excluding peak responses due to solvent from the *Sample solution*

Acceptance criteria: Disregard peaks that are less than 0.05% for any unidentified impurities, and any peaks due to solvent.

Sum of unidentified impurities: NMT 1%

Sum of related fatty alcohols and unidentified impurities: NMT 10.0%

• **ORGANIC IMPURITY TEST 2, LIMIT OF BRANCHED-CHAIN FATTY ALCOHOLS, RELATED LINEAR FATTY ALCOHOLS, AND RELATED UNSATURATED ALCOHOLS AND ALKANES**

Solution A: 1 mg/mL of [1-pentadecanol](#) in [ethanol](#)

Resolution solution: Prepare 1 mg/mL each of [USP Lauryl Alcohol RS](#), [USP Myristyl Alcohol RS](#), [USP Cetyl Alcohol RS](#), [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linolenyl Alcohol RS](#), and [USP Arachidyl Alcohol RS](#) in **Solution A**. Heat the solution in a sealed container in a 50° water bath until all fatty alcohols are dissolved. Allow the solution to cool to room temperature, and mix well. Dilute the solution with [ethanol](#) to obtain a solution containing 0.05 mg/mL each of [USP Lauryl Alcohol RS](#), [USP Myristyl Alcohol RS](#), [USP Cetyl Alcohol RS](#), [1-pentadecanol](#), [USP Stearyl Alcohol RS](#), [USP Oleyl Alcohol RS](#), [USP Linolenyl Alcohol RS](#), and [USP Arachidyl Alcohol RS](#).

Sample solution: 1 mg/mL of Stearyl Alcohol in [ethanol](#). Heat the solution in a sealed container in a 50° water bath until stearyl alcohol is dissolved. Allow the solution to cool to room temperature, and mix well.

Chromatographic system: Proceed as directed in the Assay, except for the split ratio.

Injection type: Split, split ratio, 5:1

System suitability

Sample: *Resolution solution*

[NOTE—See [Table 4](#) for the relative retention times.]

Table 4

Component	Relative Retention Time
<i>n</i> -Octadecane ^a	0.77
Lauryl alcohol ^b	0.79
<i>n</i> -Nonadecane ^a	0.84
<i>n</i> -Eicosane ^a	0.92
Myristyl alcohol ^b	0.93
<i>n</i> -Heneicosane ^a	0.98
1-Pentadecanol ^c	1.00
Branched docosanes ^a	1.00–1.03
<i>n</i> -Docosane ^a	1.05
Cetyl alcohol ^b	1.09
4-Octadecanol or 5-Octadecanol ^d	1.12
3-Octadecanol ^d	1.14
2-Hexyl-1-dodecanol or 2-Octyl-1-decanol ^e	1.15
2-Butyl-1-tetradecanol ^e	1.16
Unsaturated octadecanols ^f	1.17–1.19
2-Ethyl-1-hexadecanol ^e	1.19

Component	Relative Retention Time
Nonadecanol ^d	1.20
Eicosanol ^d	1.22
Stearyl alcohol ^g	1.25
Oleyl alcohol ^b	1.28
Linolenyl alcohol ^b	1.36
Arachidyl alcohol ^b	1.44

^a Alkane.^b Related linear chain fatty alcohol.^c Internal standard.^d Linear secondary fatty alcohol.^e Related branched-chain fatty alcohol.^f Related unsaturated alcohol.^g Sample.**Suitability requirements**

Resolution: NLT 15 between the myristyl alcohol and 1-pentadecanol peaks; NLT 30 between the cetyl alcohol and stearyl alcohol peaks; NLT 2.0 between the stearyl and oleyl alcohol peaks

Analysis**Samples:** *Resolution solution and Sample solution*

Identify each related fatty alcohol, alkane, and unsaturated alcohol peak in the *Sample solution* based on those in the *Resolution solution*.

Calculate the percentage of each related fatty alcohol, alkane, or any unidentified impurity in the portion of Stearyl Alcohol taken:

$$\text{Result} = (r_U/r_T) \times 100$$

r_U = peak response of each related fatty alcohol and alkane (or any unidentified impurity) from the *Sample solution*

r_T = sum of all the peak responses excluding peak responses due to solvent from the *Sample solution*

Acceptance criteria: Disregard peaks that are less than 0.05% for any unidentified impurities and any peaks due to solvent.

Branched primary and linear secondary fatty alcohols (2-hexyl-1-dodecanol, 2-octyl-1-decanol, 2-butyl-1-tetradecanol, 2-ethyl-1-hexadecanol, 4-octadecanol or 5-octadecanol, 3-octadecanol, nonadecanol, eicosanol): NMT 5.0%

Related linear fatty alcohols (lauryl alcohol, myristyl alcohol, cetyl alcohol, oleyl alcohol, linoleyl alcohol, arachidyl alcohol): NMT 1.0%

Related alkanes (octadecane, nonadecane, eicosane, heneicosane, docosane, branched docosanes): NMT 2.0%

Related unsaturated alcohols: NMT 1.0%

Sum of unidentified impurities: NMT 2.0%

Sum of related fatty alcohols, alkanes, and unidentified impurities: NMT 10.0%

SPECIFIC TESTS

- **FATS AND FIXED OILS (401), Procedures, Acid Value:** NMT 2
- **FATS AND FIXED OILS (401), Procedures, Hydroxyl Value:** 195–220
- **FATS AND FIXED OILS (401), Procedures, Iodine Value:** NMT 2
- **WATER DETERMINATION (921), Method I, Method 1a:** NMT 0.5%, using titrant: hydralan-composite 2 and solvent: hydralan-lipoSolver MH

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers.

- **LABELING:** If a test for *Impurities other than Organic Impurity Test 1* is used, the labeling states the test with which the article complies. Label it to indicate whether it is derived from vegetable, animal, or synthetic sources.

- **USP REFERENCE STANDARDS (11)**

[USP Arachidyl Alcohol RS](#)
[USP Cetyl Alcohol RS](#)
[USP Lauryl Alcohol RS](#)
[USP Linolenyl Alcohol RS](#)
[USP Myristyl Alcohol RS](#)
[USP Oleyl Alcohol RS](#)
[USP Stearyl Alcohol RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
STEARYL ALCOHOL	Documentary Standards Support	CE2020 Complex Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	CE2020 Complex Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 50(2)

Current DocID: [GUID-A6BD307B-9DD3-4BD3-B81D-E418AC8B79F1_3_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M78240_03_01

DOI ref: [afk36](#)