

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Aug-2022
Document Type: USP Monographs
DocId: GUID-A47DBB12-4E42-4026-A00A-FF0E93320A2C_2_en-US
DOI: https://doi.org/10.31003/USPNF_M78000_02_01
DOI Ref: 38vj5

© 2025 USPC
Do not distribute

Stannous Fluoride

Change to read:

SnF_2 156.71

▲ Tin (II) fluoride;

Difluoro- λ^2 -stannane▲ (USP 1-Aug-2022) CAS RN®: 7783-47-3; UNII: 3FTR44B32Q.

Change to read:

DEFINITION

Stannous Fluoride contains NLT 71.2% of stannous tin (Sn^{2+} ▲ (USP 1-Aug-2022)), and NLT 22.3% and NMT 25.5% of fluoride (F^- ▲ (USP 1-Aug-2022)), calculated on the dried basis.

IDENTIFICATION

Change to read:

- A. ▲ The retention time of the fluoride peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay, *Procedure 2: Fluoride*.▲ (USP 1-Aug-2022)

• B.

Sample solution: 10 mg/mL of Stannous Fluoride in [water](#)

Analysis: On a spot plate, mix 2 drops of the *Sample solution* with 2 drops of [silver nitrate TS](#).

Acceptance criteria: A brown-black precipitate is formed.

• C.

Sample solution: 10 mg/mL of Stannous Fluoride in [water](#)

Analysis: Add 1 drop of the *Sample solution* to 2 drops of [mercuric chloride TS](#).

Acceptance criteria: A white, silky precipitate is formed. On further addition of the *Sample solution*, a brown-black precipitate is formed.

ASSAY

Change to read:

- **PROCEDURE 1: STANNOUS ▲TIN**▲ (USP 1-Aug-2022)

Solution A: 5 mg/mL of [sodium hydroxide](#) and 50 mg/mL of [potassium iodide](#) in oxygen-free [water](#)

Potassium iodide-iodate solution: 0.1 N potassium iodide-iodate solution prepared as follows. In a 1000-mL volumetric flask, dissolve 3.567 g of [potassium iodate](#), previously dried at 110° to constant weight, in 200 mL of *Solution A*, and dilute with oxygen-free [water](#) to volume. Standardize this solution by titrating a solution prepared from an accurately weighed quantity of [tin](#) (Sn) and [hydrochloric acid](#). Each milliliter of 0.1 N potassium iodide-iodate solution is equivalent to 5.935 mg of tin (Sn).

Sample: 250 mg of Stannous Fluoride

Titrimetric system

▲(See [Titrimetry \(541\)](#).)▲ (USP 1-Aug-2022)

Mode: Direct titration

Titrant: Potassium iodide-iodate solution

Endpoint detection: Visual

Analysis: Transfer the *Sample* to a 500-mL conical flask, and add 300 mL of hot, recently boiled 3 N [hydrochloric acid](#). While passing a stream of an oxygen-free inert gas over the surface of the liquid, swirl the flask to dissolve the *Sample*, and cool to room temperature. Add 5 mL of [potassium iodide TS](#), and titrate in an inert atmosphere with *Titrant*, adding 3 mL of [starch TS](#) as the endpoint is approached.

▲Calculate the percentage of stannous tin (Sn^{2+}) in the portion of Stannous Fluoride taken:

$$\text{Result} = V_s \times N \times F \times (1/W) \times 100$$

V_s = volume of *Titrant* consumed by the *Sample* (mL)

N = actual *Titrant* concentration, in normality (mEq/mL)

F = equivalency factor of stannous tin, 59.35 mg/mEq

W = weight of the *Sample* taken (mg)▲ (USP 1-Aug-2022)

Acceptance criteria: NLT 71.2% on the dried basis

Change to read:

• **PROCEDURE 2: FLUORIDE**

▲[NOTE—Store all solutions in plastic containers. It is recommended to use plastic HPLC vials. Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.]

Mobile phase: 15 mM [potassium hydroxide](#) in [water](#). [NOTE—*Mobile phase* can be generated electrolytically using an automatic eluant generator.]

System suitability solution: 2.0 µg/mL of [USP Sodium Fluoride RS](#) and 1.0 µg/mL of [USP Sodium Acetate RS](#) in [water](#)

Standard solution: 2.0 µg/mL of [USP Sodium Fluoride RS](#) in [water](#)

Sample solution: 3.7 µg/mL of Stannous Fluoride in [water](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity with suppression

Columns

Guard: 4.0-mm × 5-cm; 13-µm packing [L120](#). [NOTE—Alternatively, a 4.0-mm × 0.5-cm column that contains 4.6-µm packing [L91](#) may be used.]

Analytical: 4.0-mm × 25-cm; 7.5-µm packing [L113](#). [NOTE—Alternatively, a 4.0-mm × 25-cm column that contains 4.6-µm packing [L91](#) may be used.]

Column temperature: 40°

Flow rate: 1.0 mL/min

Injection volume: 20 µL

Run time: NLT 6 times the retention time of fluoride

System suitability

Samples: System suitability solution and Standard solution

[NOTE—The relative retention times for the fluoride and acetate ions are 1.0 and 1.1, respectively.]

Suitability requirements

Resolution: NLT 1.5 between the fluoride and acetate ions, System suitability solution

Tailing factor: NMT 2.0 for the fluoride ion, Standard solution

Relative standard deviation: NMT 1.0% for the fluoride ion, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of fluoride (F⁻) in the portion of Stannous Fluoride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (A_r/M_r) \times 100$$

r_u = peak response of the fluoride ion from the *Sample solution*

r_s = peak response of the fluoride ion from the *Standard solution*

C_s = concentration of [USP Sodium Fluoride RS](#) in the *Standard solution* (µg/mL)

C_u = concentration of Stannous Fluoride in the *Sample solution* (µg/mL)

A_r = atomic weight of fluoride, 19.00

M_r = molecular weight of sodium fluoride, 41.99▲ (USP 1-Aug-2022)

Acceptance criteria: 22.3%–25.5% on the dried basis

IMPURITIES

Change to read:

• ANTIMONY**Solution A:** 0.1 mg/mL of [rhodamine B](#) in 0.5 N [hydrochloric acid](#)**Standard stock solution:** 0.275 mg/mL of antimony potassium tartrate in [water](#)**Standard solution:** 2.75 µg/mL of antimony potassium tartrate in 6 N [hydrochloric acid](#) from the **Standard stock solution****Sample solution:** 20 mg/mL of Stannous Fluoride in 6 N [hydrochloric acid](#)**Instrumental conditions**▲(See *Ultraviolet-Visible Spectroscopy (857)*.)▲ (USP 1-Aug-2022)**Mode:** Vis**Analytical wavelength:** 550 nm**Blank:** Water**Analysis****Samples:** *Standard solution* and *Sample solution*

Transfer 5 mL each of the *Standard solution* and the *Sample solution* into separate 125-mL separators, add 15 mL of [hydrochloric acid](#) and 1 g of [ceric sulfate](#), and allow to stand for 5 min, with occasional shaking. Add 500 mg of [hydroxylamine hydrochloride](#), and shake for 1 min. Add 15 mL of [isopropyl ether](#) into the mixture, shake for 30 s, and add 7 mL of [water](#). Cool in a water bath at room temperature for 10 min, shake for 30 s, allow the layers to separate, and discard the aqueous phase. Add 20 mL of *Solution A*, shake for 30 s, and discard the aqueous layer. Decant the ether layer from the top of the separator, and centrifuge, if necessary, to obtain a clear solution. Concomitantly determine the absorbances of the ether solutions from the *Standard solution* and the *Sample solution*.

Acceptance criteria: The absorbance of the *Sample solution* is NMT that of the *Standard solution* (0.005%).**• WATER-INSOLUBLE SUBSTANCES****Sample:** 10 g of Stannous Fluoride

Analysis: Transfer the *Sample* to a 400-mL plastic beaker, add 200 mL of [water](#), and stir with a plastic rod for 3 min, or until no more solid dissolves. Filter through a tared filtering crucible, and wash thoroughly, first with 10 mg/mL of [ammonium fluoride](#) solution, then with [water](#). [NOTE—Prepare and use the filtering crucible in a well-ventilated hood.] Dry the residue at 105° for 4 h, cool, and weigh.

Acceptance criteria: NMT 0.2%**SPECIFIC TESTS****• pH (791)****Sample solution:** 4 mg/mL of Stannous Fluoride in [water](#), freshly prepared**Acceptance criteria:** 2.8–3.5**• Loss on Drying (731)****Analysis:** Dry at 105° for 4 h.**Acceptance criteria:** NMT 0.5%**ADDITIONAL REQUIREMENTS****• PACKAGING AND STORAGE:** Preserve in well-closed containers.**Change to read:****• USP REFERENCE STANDARDS (11)**▲ [USP Sodium Acetate RS](#)▲ (USP 1-Aug-2022)[USP Sodium Fluoride RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
STANNOUS FLUORIDE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 47(2)

Current DocID: [GUID-A47DBB12-4E42-4026-A00A-FF0E93320A2C_2_en-US](#)

OFFICIAL