

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2019
Document Type: NF Monographs
DocId: GUID-11DFB7C5-B20F-47D6-BC0E-B10B3BFFD1F9_5_en-US
DOI: https://doi.org/10.31003/USPNF_M77550_05_01
DOI Ref: h9tqv

© 2025 USPC
Do not distribute

Sorbic Acid

Change to read:

$C_6H_8O_2$ 112.13

2,4-Hexadienoic acid, (E,E)-; ▲(2E,4E)-Hexa-2,4-dienoic acid; ▲ (NF 1-Dec-2019)

(E,E)-Sorbic acid ▲ (NF 1-Dec-2019) CAS RN®: 110-44-1.

DEFINITION

Change to read:

Sorbic Acid contains NLT ▲98.0%▲ (NF 1-Dec-2019) and NMT ▲102.0%▲ (NF 1-Dec-2019) of sorbic acid ($C_6H_8O_2$), calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. ▲[SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197A or 197K▲ (Official 1-May-2020)
- B. A 1-in-400,000 solution in isopropyl alcohol exhibits an absorbance maximum at 254 ± 2 nm.

ASSAY

Change to read:

• PROCEDURE

▲**Solution A:** 0.1% (v/v) [trifluoroacetic acid](#) in water

Solution B: 0.1% (v/v) [trifluoroacetic acid](#) in [methanol](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	75	25
17.0	75	25
18.0	5	95
23.0	5	95
23.1	75	25
30.0	75	25

Diluent: Water and [methanol](#) (1:1, v/v)

System suitability solution: Prepare 0.1 mg/mL of [USP Sorbic Acid RS](#) in *Diluent* first and then treat the solution with UV irradiation to generate ~1% degradation of sorbic acid (based on area%).¹

Standard solution: 0.1 mg/mL of [USP Sorbic Acid RS](#) in *Diluent*

Sample solution: 0.1 mg/mL of Sorbic Acid in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 264 nm

Column: 4.6-mm × 15-cm; 3.5-μm packing [L1](#)

Column temperature: 40°

Flow rate: 1.0 mL/min

Injection volume: 10 μL

Run time: 30 min

System suitability

Samples: System suitability solution and Standard solution

[NOTE—The approximate relative retention times of related substances are listed in [Table 2](#).]

Suitability requirements

Resolution: NLT 1.5 between sorbic acid and sorbic acid *trans, cis* isomer, System suitability solution

Tailing factor: NMT 2.0, determined from sorbic acid, Standard solution

Relative standard deviation: NMT 2.0%, determined from sorbic acid, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of sorbic acid in the sample taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of sorbic acid from the *Sample solution*

r_S = peak area of sorbic acid from the *Standard solution*

C_S = concentration of [USP Sorbic Acid RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Sorbic Acid in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

Table 2

Name	Relative Retention Time
Sorbic acid <i>cis, cis</i> isomer ^a	0.83
Sorbic acid <i>cis, trans</i> isomer ^b	0.89
Sorbic acid <i>trans, cis</i> isomer ^c	0.92
Sorbic acid	1.0

^a (Z,Z)-Sorbic acid.

^b (Z,E)-Sorbic acid.

^c (E,Z)-Sorbic acid.

[NOTE—Sorbic acid *cis, trans* isomer and sorbic acid *trans, cis* isomer might co-elute in some columns, which has no effect on assay analysis.] ▲ (NF 1-Dec-2019)

IMPURITIES

Add the following:

▲ Limit of Aldehyde

Decolorized fuchsin solution: Dissolve 0.1 g of [basic fuchsin](#) in 60 mL of water. Add a solution containing 1 g of [anhydrous sodium sulfite](#) in 10 mL of water. Slowly and with continuous shaking add 2 mL of [hydrochloric acid](#). Dilute with water to 100 mL. Allow to stand protected from light for at least 12 h, decolorize with [activated charcoal](#) and filter. If the solution becomes cloudy, filter before use. If on standing the solution becomes violet, decolorize again by adding [activated charcoal](#).

Test for sensitivity: To 1.0 mL of the *Decolorized fuchsin solution* add 1.0 mL of water and 1.0 mL of [alcohol, aldehyde-free](#). Add 0.2 mL of a solution containing 0.1 g/L of formaldehyde (CH_2O). A pale-pink color develops within 5 min.

Storage of Decolorized fuchsin solution: Protected from light

Acetaldehyde standard solution: 100 $\mu\text{g}/\text{mL}$ of acetaldehyde ($\text{C}_2\text{H}_4\text{O}$). Dissolve 1.0 g of [acetaldehyde](#) in [2-propanol](#) and dilute with the same solvent to 100.0 mL. Dilute 5.0 mL of the solution with [2-propanol](#) to 500.0 mL. Prepare immediately before use.

Standard solution: Add 1 mL of *Decolorized fuchsin solution* to a mixture of 1.5 mL of *Acetaldehyde standard solution*, 4 mL of [2-propanol](#), and 4.5 mL of water.

Sample solution: Dissolve 1.0 g of the sample in a mixture of 30 mL of water and 50 mL of [2-propanol](#), adjust with 0.1 N hydrochloric acid or 0.1 N sodium hydroxide to a pH of 4 and dilute with water to 100 mL.

Analysis: To 10 mL of the *Sample solution* add 1 mL of *Decolorized fuchsin solution* and allow to stand for 30 min. Any color in the solution is not more intense than that in the *Standard solution* prepared at the same time.

Acceptance criteria: NMT 0.15%, as acetaldehyde ($\text{C}_2\text{H}_4\text{O}$)▲ (NF 1-Dec-2019)

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.2%

SPECIFIC TESTS

- [MELTING RANGE OR TEMPERATURE \(741\)](#): 132°–135°
- [WATER DETERMINATION \(921\), Method I](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers, protected from light, and avoid exposure to excessive heat.

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Sorbic Acid RS](#)

¹ UV irradiation conditions of wavelengths of 254, 300, and 365 nm at 18 Watts for 2 h have been used for the solution. Other equivalent UV conditions are also suitable as long as ~1% degradation of sorbic acid (based on area%) can be achieved after the irradiation. Quartz glassware is preferred.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SORBIC ACID	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(2)

Current DocID: [GUID-11DFB7C5-B20F-47D6-BC0E-B10B3BFFD1F9_5_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M77550_05_01

DOI ref: [h9tbv](#)