

Status: Currently Official on 18-Feb-2025
 Official Date: Official as of 01-Jan-2018
 Document Type: USP Monographs
 DocID: GUID-AF61C4F4-7CC1-4F68-ABF8-CF27DBE1DF83_3_en-US
 DOI: https://doi.org/10.31003/USPNF_M77390_03_01
 DOI Ref: nrs3c

© 2025 USPC
 Do not distribute

Sodium Sulfate

$\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$ 322.19

Sulfuric acid disodium salt, decahydrate.

Disodium sulfate decahydrate CAS RN®: 7727-73-3; UNII: 0YPR65R21J.

Anhydrous 142.04 CAS RN®: 7757-82-6; UNII: 36KCS0R750.

» Sodium Sulfate contains ten molecules of water of hydration, or is anhydrous. It contains not less than 99.0 percent of Na_2SO_4 , calculated on the dried basis.

Packaging and storage—Preserve in tight containers, preferably at a temperature not exceeding 30°.

Labeling—Label it to indicate whether it is the decahydrate or is anhydrous.

Identification—A solution (1 in 20) responds to the tests for [Sodium \(191\)](#) and for [Sulfate \(191\)](#).

Acidity or alkalinity—To 10 mL of a solution, containing the equivalent of 1.0 g of $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$ in 20 mL of water, add 1 drop of bromothymol blue TS: not more than 0.50 mL of either 0.010 N hydrochloric acid or 0.010 N sodium hydroxide is required to change the color of the solution.

Loss on drying (731)—Dry at 105° for 4 hours: the decahydrate loses between 51.0% and 57.0% of its weight, and the anhydrous form loses not more than 0.5% of its weight.

Chloride (221)—A portion equivalent to 1.0 g of $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$ shows no more chloride than corresponds to 0.30 mL of 0.020 N hydrochloric acid (0.02%).

Assay—Weigh accurately a portion of Sodium Sulfate, equivalent to about 400 mg of anhydrous sodium sulfate, dissolve in 200 mL of water, and add 1 mL of hydrochloric acid. Heat to boiling, and gradually add, in small portions and while constantly stirring, an excess of hot barium chloride TS (about 8 mL). Heat the mixture on a steam bath for 1 hour, collect the precipitate of barium sulfate on a retentive, ashless filter paper, wash until free from chloride when tested with silver nitrate TS, and place the filter into a suitable tared crucible. Carefully burn away the paper, and ignite at 800 ± 25° to constant weight. The weight of the barium sulfate so obtained, multiplied by 0.6086, represents its equivalent of Na_2SO_4 .

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SODIUM SULFATE	Documentary Standards Support	SM32020 Small Molecules 3
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM32020 Small Molecules 3

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 34(5)

Current DocID: GUID-AF61C4F4-7CC1-4F68-ABF8-CF27DBE1DF83_3_en-US

Previous DocID: GUID-AF61C4F4-7CC1-4F68-ABF8-CF27DBE1DF83_1_en-US

DOI: https://doi.org/10.31003/USPNF_M77390_03_01

DOI ref: nrs3c