

Status: Currently Official on 18-Feb-2025
 Official Date: Official as of 01-Aug-2023
 Document Type: USP Monographs
 DocId: GUID-299B6CD8-4CC5-455C-9A75-41587F119746_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M76880_04_01
 DOI Ref: spn51

© 2025 USPC
 Do not distribute

Sodium Nitrite

Change to read:

NaNO_2 ▲68.99 ▲ (USP 1-Aug-2023)

Nitrous acid, sodium salt;

Sodium nitrite CAS RN®: 7632-00-0; UNII: M0KG633D4F.

DEFINITION

Sodium Nitrite contains NLT 98.0% and NMT 102.0% of sodium nitrite (NaNO_2), calculated on the dried basis.

IDENTIFICATION

- A. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Sodium](#): Meets the requirements
- B. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Nitrite](#): Meets the requirements

Change to read:

- C. The retention time of the ▲nitrite▲ (USP 1-Aug-2023) peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• PROCEDURE

▲[NOTE—Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.] ▲ (USP 1-Aug-2023)

Mobile phase: 2.7 mM sodium carbonate and 0.3 mM [sodium bicarbonate](#) in [water](#)

Standard solution: 0.12 mg/mL of [USP Sodium Nitrite RS](#)▲ and 1 $\mu\text{g}/\text{mL}$ of [USP Sodium Nitrate RS](#)▲ (USP 1-Aug-2023) in [water](#)

Sample solution: 0.12 mg/mL of Sodium Nitrite in [water](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: Conductivity with suppression

Columns

Guard: 4-mm \times 50-mm, ▲13- μm ▲ (USP 1-Aug-2023) packing ▲[L110](#)▲ (USP 1-Aug-2023)

Analytical: 4-mm \times 200-mm; 9- μm packing [L105](#)

Flow rate: 1.5 mL/min

Injection volume: 25 μL

Run time: NLT 4 times the retention time of nitrite

System suitability

Sample: *Standard solution*

[NOTE—The relative retention times for ▲nitrite and nitrate▲ (USP 1-Aug-2023) ions are 1.0 and 1.85, respectively.]

Suitability requirements

Tailing factor: NMT 2.0 ▲for nitrite▲ (USP 1-Aug-2023)

Relative standard deviation: NMT 1.5% ▲for nitrite▲ (USP 1-Aug-2023)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of sodium nitrite (NaNO_2) in the portion of Sodium Nitrite taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response ▲of nitrite▲ (USP 1-Aug-2023) from the *Sample solution*

r_s = peak response ▲of nitrite▲ (USP 1-Aug-2023) from the *Standard solution*

C_s = concentration of [USP Sodium Nitrite RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Sodium Nitrite in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the dried basis

IMPURITIES

Change to read:

- **LIMIT OF ALUMINUM, IRON, AND SELENIUM**

▲ [NOTE—Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.] ▲ (USP 1-Aug-2023)

Internal standard stock solution: To 2 mL each of commercially available 1 mg/mL scandium (for aluminum) and yttrium (for iron) and 10 mg/mL germanium (for selenium) standards in a 100-mL volumetric flask, add 2 mL of [nitric acid](#) and dilute with [water](#) to volume.

Internal standard solution: To 0.5 mL of the *Internal standard stock solution* in a 10-mL volumetric flask, add 0.5 mL of [nitric acid](#) and dilute with [water](#) to volume.

Blank solution: Dilute with [water](#) to volume, 0.125 mL of the *Internal standard solution*, 0.5 mL of [nitric acid](#), and 0.5 mL of 80 ppm gold solution in a 50-mL volumetric flask.

Standard solutions: 2, 5, 50, and 100 ppb solutions for aluminum and selenium; 0, 50, 100, 500, and 1000 ppb for iron as follows. To suitable amounts of commercially available aluminum, selenium, and iron standard solutions in a 50-mL volumetric flask, add 0.125 mL of the *Internal standard solution*, 0.5 mL of [nitric acid](#), and 0.5 mL of 80 ppm gold solution, and dilute with [water](#) to volume.

Sample solution: To 1 g of Sodium Nitrite in a 50-mL volumetric flask, add 0.125 mL of the *Internal standard solution*, 2.5 mL of [nitric acid](#), and 0.5 mL of 80 ppm gold solution, and dilute with [water](#) to volume.

Instrumental conditions

(See [Plasma Spectrochemistry \(730\)](#).)

Mode: Inductively coupled plasma–mass spectrometer (ICP–MS)

Spectrometer: Quadrupole mass spectrometer

Detector: Ion detector

System suitability

Sample: *Standard solutions*

Suitability requirements: Before analyzing samples, the instrument must pass a suitable performance check. Generate the calibration curve using the corresponding *Standard solutions* for each element under test. The linear regression coefficient is NLT 0.999.

Analysis

Sample: *Sample solution*

Determine the concentration of each element in the *Sample solution* using the calibration curve.

▲ Calculate the amount of each element in the portion of Sodium Nitrite taken:

$$\text{Result} = [(C_t \times V)/W]$$

C_t = concentration of each element in the *Sample solution* determined from the calibration curve (μg/mL or ppm)

V = volume of the *Sample solution*, 50 mL

W = weight of Sodium Nitrite taken (g)

▲ (USP 1-Aug-2023)

Acceptance criteria: See [Table 1](#).

Table 1

Element	Isotope (amu)	Acceptance Criteria, NMT (ppm)
Aluminum	27	2
Iron	57	10
Selenium	82	30

Change to read:

- **LIMIT OF SODIUM NITRATE**

▲ [NOTE—Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.] ▲ (USP 1-Aug-2023)

Mobile phase, ▲Standard solution, ▲ (USP 1-Aug-2023) Sample solution, and Chromatographic system: Proceed as directed in the Assay.

System suitability ▲ (USP 1-Aug-2023)

Sample: Standard solution

[NOTE—The relative retention times for nitrite and nitrate are 1.0 and about 1.85, respectively.]

Suitability requirements**Tailing factor:** NMT 2.0 ▲ for nitrite ▲ (USP 1-Aug-2023)**Relative standard deviation:** NMT 1.5% ▲ for nitrite and NMT 5% for nitrate ▲ (USP 1-Aug-2023)**Analysis****Sample: Sample solution**Calculate the percentage of sodium nitrate (NaNO_3) in the portion of ▲ Sodium Nitrite ▲ (USP 1-Aug-2023) taken:

$$\text{Result} = (r_U/r_S) \times (1/F) \times 100$$

 r_U = peak response of nitrate from the *Sample solution* r_S = peak response of nitrite from the *Sample solution* F = relative response factor for nitrate, 0.7**Acceptance criteria:** NMT 0.4%**Change to read:**• **LIMIT OF CALCIUM AND POTASSIUM**

▲ [NOTE—Use water with a resistivity of NLT 18 megohm-cm to prepare the solutions.] ▲ (USP 1-Aug-2023)

Internal standard solution: 40 ppm scandium solution prepared from a suitable commercially available 1000 ppm high purity scandium standard solution in water**Blank solution:** To 0.5 mL of the *Internal standard solution* in a 50-mL volumetric flask, add 0.5 mL of nitric acid and dilute with water to volume.**Standard solutions:** 2.5, 5.0, 7.5, and 10.0 ppm of calcium and potassium prepared as follows. To suitable amounts of the respective commercially available calcium and potassium standard solutions in a suitable volumetric flask, add 0.5 mL of the *Internal standard solution* and 0.5 mL of nitric acid, and dilute with water to 50 mL.**Sample solution:** To 1 g of Sodium Nitrite in a 50-mL volumetric flask, add 0.5 mL of the *Internal standard solution* and 2.5 mL of nitric acid, and dilute with water to volume.**Instrumental conditions**(See [Plasma Spectrochemistry \(730\)](#).)**Mode:** Inductively coupled plasma–mass spectrometer (ICP–MS)**Spectrometer:** Quadrupole mass spectrometer**Detector:** Ion detector**System suitability****Sample: Standard solutions****Suitability requirements:** Before analyzing samples, the instrument must pass a suitable performance check. Generate the calibration curve using the *Standard solutions* of the corresponding elements. The linear regression coefficient is NLT 0.999.**Analysis****Sample: Sample solution**Determine the concentration of each element in the *Sample solution* using the calibration curve.

▲ Calculate the amount of each element in the portion of Sodium Nitrite taken:

$$\text{Result} = [(C_t \times V)/W]$$

 C_t = concentration of each element in the *Sample solution* determined from the calibration curve (ppm or $\mu\text{g}/\text{mL}$) V = volume of the *Sample solution*, 50 mL W = weight of Sodium Nitrite taken (g)

▲ (USP 1-Aug-2023)

Acceptance criteria: See [Table 2](#).**Table 2**

Element	Isotope (amu)	Acceptance Criteria, NMT (ppm)
Calcium	44	100

Element	Isotope (amu)	Acceptance Criteria, NMT (ppm)
Potassium	39	50

Change to read:**• LIMIT OF CARBONATE**

All carbonate solutions must be prepared fresh and stored in tightly sealed vials and stored in a cool area away from excessive heat.

Standard stock solution: 1 mg/mL of carbonate prepared as follows. Dissolve 0.177 g of [▲USP Sodium Carbonate Anhydrous RS](#)▲ (USP 1-Aug-2023) in a 100-mL volumetric flask, and dilute with water to volume.

Standard solutions: 0.50, 1.0, 2.0, 4.0, and 5.0 µg/mL carbonate in [water](#) from the *Standard stock solution*

Sample solution: Transfer 1.0 g of Sodium Nitrite into a 100-mL volumetric flask, and dilute with [water](#) to volume.

▲Instrumental conditions

(See [Total Organic Carbon \(643\)](#).)▲ (USP 1-Aug-2023)

System suitability: Before analyzing samples, the total organic carbon (TOC) analyzer must pass a suitable performance check. Generate the calibration curve using the *Standard solutions*. The linear regression coefficient is NLT 0.995; the relative standard deviation for each *Standard solution* is NMT 10%.

Analysis

Sample: *Sample solution*

Calculate the percentage of carbonate in the portion of [▲Sodium Nitrite](#)▲ (USP 1-Aug-2023) taken:

$$\text{Result} = [(C_t \times \Delta V_{\text{▲ (USP 1-Aug-2023)}})/W] \times 100$$

C_t = concentration of carbonate ▲ in the *Sample solution* determined from the calibration curve▲ (USP 1-Aug-2023) (g/mL)

ΔV = volume of the *Sample solution*, 100 mL▲ (USP 1-Aug-2023)

W = weight of [▲Sodium Nitrite](#)▲ (USP 1-Aug-2023) taken (g)

Acceptance criteria: NMT 0.02%

Change to read:**• TOTAL NON-PURGEABLE ORGANIC CONTENT**

Standard stock solution: Equivalent to 250 µg/mL of total organic carbon prepared as follows. Weigh 9 mg of [USP Sucrose RS](#) in a suitable flask, and add 15 mL of [water](#).

Standard solutions: ▲Equivalent to▲ (USP 1-Aug-2023) 0.5, 2.0, and 10 µg/mL of total organic carbon in [water](#) from the *Standard stock solution*

Sample solution: Dissolve and dilute with [water](#) to volume, 5.0 g of Sodium Nitrite in a 100-mL volumetric flask.

▲Instrumental conditions

(See [Total Organic Carbon \(643\)](#).)▲ (USP 1-Aug-2023)

System suitability: Before analyzing samples, the total organic carbon analyzer instrument must pass a suitable performance check.

Generate the calibration curve using the *Standard solutions*. The linear regression coefficient is NLT 0.99; relative standard deviation for the 2 µg/mL and 10 µg/mL calibration standards is NMT 15%.

Analysis

Sample: *Sample solution*

Calculate the amount, in ppm, of non-purgeable organic content present in the [▲Sodium Nitrite](#)▲ (USP 1-Aug-2023) taken:

$$\text{Result} = [(C_t \times \Delta V_{\text{▲ (USP 1-Aug-2023)}})/W]$$

C_t = amount of non-purgeable organic content as determined ▲ from the calibration curve (µg/mL)

V = volume of the *Sample solution*, 100 mL▲ (USP 1-Aug-2023)

W = weight of [▲Sodium Nitrite](#)▲ (USP 1-Aug-2023) taken (g)

Acceptance criteria: NMT 10 ppm

Change to read:**• LIMIT OF SULFATE**

Standard solution: 0.0148 mg/mL of [▲USP Sodium Sulfate Anhydrous RS](#)▲ (USP 1-Aug-2023) in [water](#)

Sample solution: 100 mg/mL of Sodium Nitrite in [water](#)

Analysis

Samples: ▲Standard solution and ▲ (USP 1-Aug-2023) Sample solution

Evaporate 5 mL of the ▲Standard solution or ▲ (USP 1-Aug-2023) Sample solution to dryness. Add 1 mL of dilute hydrochloric acid (prepared by adding 1 mL of [hydrochloric acid](#) to 19 mL of [water](#)). Pass through a prewashed small filter paper, and wash with two 2-mL portions of [water](#). Dilute to 10 mL, and add 1 mL of [barium chloride TS](#). Compare turbidity in the Standard solution and Sample solution, 10 min after adding the [barium chloride TS](#).

Acceptance criteria: Any turbidity in the Sample solution should not exceed the turbidity in the Standard solution (NMT 0.01%).

Change to read:

- **LIMIT OF CHLORIDE**

Standard solution: 0.0165 mg/mL of ▲[USP Sodium Chloride RS](#) ▲ (USP 1-Aug-2023) in [water](#)

Sample solution: 100 mg/mL of Sodium Nitrite in water

Analysis

Samples: Standard solution and Sample solution

To 2.0 mL of the Sample solution in a suitable test tube add 10 mL of water and 1 mL of [glacial acetic acid](#) and boil for 5 min. Pass through a chlorine-free filter paper, and dilute with water to 20 mL. Dilute 1 mL of the Standard solution with water to 20 mL in a separate test tube. Add 1 mL of [nitric acid](#) and 1 mL of 0.1 N silver nitrate. Allow to stand for 5 min protected from light and compare using a black background.

Acceptance criteria: Any turbidity in the Sample solution should not exceed the turbidity in the Standard solution (NMT 50 ppm).

SPECIFIC TESTS

Change to read:

- [BACTERIAL ENDOTOXINS TEST \(85\)](#): ▲Meets the requirements ▲ (USP 1-Aug-2023)
- [MICROBIAL ENUMERATION TESTS \(61\)](#): NMT 100 cfu/g, total aerobic microbial count and NMT 20 cfu/g, total yeasts and molds

Change to read:

- [pH \(791\)](#)

▲Sample solution: 10% of Sodium Nitrite in [water](#) at 25° ▲ (USP 1-Aug-2023)

Acceptance criteria: 7.0–9.0

Change to read:

- **INSOLUBLE MATTER**

Sample solution: ▲Dissolve 20 g ▲ (USP 1-Aug-2023) of Sodium Nitrite ▲ in 200 mL of ▲ (USP 1-Aug-2023) [water](#).

Analysis: Heat the Sample solution to boiling in a covered beaker at about 100° for 1 h. Pass the hot solution through a suitable crucible filter of 10–15 µm pore size. Wash the beaker and filter with hot water, dry at 105°, cool in a desiccator, and weigh the residue.

Acceptance criteria: ▲NMT 1 mg (0.005%) ▲ (USP 1-Aug-2023)

- [LOSS ON DRYING \(731\)](#)

Analysis: Dry over silica gel for 4 h.

Acceptance criteria: NMT 0.25%

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers and store at 25°, excursions permitted between 15° and 30°.

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#)

▲ [USP Sodium Carbonate Anhydrous RS](#)

[USP Sodium Chloride RS](#)

[USP Sodium Nitrate RS](#) ▲ (USP 1-Aug-2023)

[USP Sodium Nitrite RS](#)

▲ [USP Sodium Sulfate Anhydrous RS](#) ▲ (USP 1-Aug-2023)

[USP Sucrose RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SODIUM NITRITE	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(5)

Current DocID: GUID-299B6CD8-4CC5-455C-9A75-41587F119746_4_en-US

DOI: https://doi.org/10.31003/USPNF_M76880_04_01

DOI ref: spn51

OFFICIAL