

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Jan-2018
 Document Type: NF Monographs
 DocId: A7D27F1B-918D-41A5-AEE1-EE36088E2C7E_3_en-US
 DOI: https://doi.org/10.31003/USPNF_M76640_03_01
 DOI Ref: cb8je

© 2025 USPC
 Do not distribute

Sodium Hydroxide

NaOH 40.00

Sodium hydroxide CAS RN®: 1310-73-2.

DEFINITION

Sodium Hydroxide contains NLT 95.0% and NMT 100.5% of total alkali, calculated as sodium hydroxide (NaOH), including NMT 3.0% of sodium carbonate (Na_2CO_3). It also contains NLT 54.0% and NMT 59.8% of sodium.

[**CAUTION**—Exercise great care in handling sodium hydroxide, because it rapidly destroys tissues.]

IDENTIFICATION

- A. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Sodium](#): A solution (1 in 25) meets the requirements.
- B. [pH \(791\)](#)

Sample solution: 0.1 mg/mL of Sodium Hydroxide

Acceptance criteria: NLT 11.0

ASSAY

• TOTAL ALKALI

Sample: 1.5 g

Blank: 40.0 mL of [carbon dioxide-free water](#)

Titrimetric system

(See [Titrimetry \(541\)](#).)

Mode: Direct titration

Titrant: [1 N sulfuric acid VS](#)

Endpoint detection: Visual

Analysis: Dissolve the **Sample** in 40 mL of [carbon dioxide-free water](#). Cool the solution to room temperature, and add [phenolphthalein TS](#).

Titrate with [1 N sulfuric acid VS](#). At the discharge of the pink color of the indicator, record the volume of **Titrant** (V_{S1}). Add [methyl orange TS](#), and continue the titration until a persistent pink color is produced. Record the volume of **Titrant** (V_{S2}). Perform a blank determination, and make any necessary corrections.

Calculate the percentage of total alkali, calculated as sodium hydroxide (NaOH), in the **Sample** taken:

$$\text{Result} = \{[(V_{S2} - V_B) \times N \times F_1] / W\} \times 100$$

V_{S2} = volume of **Titrant** consumed by the **Sample** to the second endpoint (mL)

V_B = volume of **Titrant** consumed by the **Blank** (mL)

N = actual normality of the **Titrant** (mEq/mL)

F_1 = equivalency factor, 40.00 mg/mEq

W = weight of the **Sample** (mg)

Calculate the percentage of sodium carbonate (Na_2CO_3) in the **Sample** taken:

$$\text{Result} = \{[(V_{S2} - V_{S1}) \times N \times F_2] / W\} \times 100$$

V_{S2} = volume of **Titrant** consumed by the **Sample** to the second endpoint (mL)

V_{S1} = volume of *Titrant* consumed by the *Sample* to the first endpoint (mL)

N = actual normality of the *Titrant* (mEq/mL)

F_2 = equivalency factor, 106.0 mg/mEq

W = weight of the *Sample* (mg)

Acceptance criteria: 95.0%–100.5% of total alkali; NMT 3.0% of sodium carbonate (Na_2CO_3)

• **CONTENT OF SODIUM**

Diluent: 1% [hydrochloric acid](#) solution

Standard stock solution: 25.41 $\mu\text{g}/\text{mL}$ of [sodium chloride](#) in *Diluent*. This solution contains 10 $\mu\text{g}/\text{mL}$ of sodium.

Standard solutions: Transfer 6.0-, 7.5-, and 9.0-mL portions of *Standard stock solution* to separate 100-mL volumetric flasks. Dilute the content of each flask with *Diluent* to volume, and mix to obtain solutions having known concentrations of 0.6, 0.75, and 0.9 $\mu\text{g}/\text{mL}$ of sodium, respectively.

Sample stock solution: 1.303 mg/mL of Sodium Hydroxide in *Diluent*

Sample solution: Transfer 0.1 mL of *Sample stock solution* to a 100-mL volumetric flask and dilute with *Diluent* to volume.

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: 589.0 nm (sodium emission line)

Lamp: Sodium hollow-cathode

Flame: Air–acetylene

Blank: *Diluent*

Standard curve

Samples: *Standard solutions*

Plot: Absorbance values versus their corresponding concentration ($\mu\text{g}/\text{mL}$) of sodium. The correlation coefficient is NLT 0.995.

Analysis

Sample: *Sample solution*

From the *Standard curve*, determine the concentration of sodium in the *Sample solution*.

Calculate the percentage of sodium in the portion of Sodium Hydroxide taken:

$$\text{Result} = (C_s/C_u) \times 100$$

C_s = concentration of sodium in the *Sample solution* from the *Standard curve* ($\mu\text{g}/\text{mL}$)

C_u = concentration of Sodium Hydroxide in the *Sample solution* ($\mu\text{g}/\text{mL}$)

Acceptance criteria: 54.0%–59.8%

IMPURITIES

• **POTASSIUM**

Diluent: 1% [hydrochloric acid](#) solution

Standard stock solution: 1.907 mg/mL of [potassium chloride](#), previously dried at 105° for 2 h, in [water](#). Transfer 5.0 mL of this solution to a 1.0-L volumetric flask and dilute with *Diluent* to volume. This solution contains 5 $\mu\text{g}/\text{mL}$ of potassium.

Standard solutions: Transfer 2.0-, 5.0-, and 10.0-mL portions of the *Standard stock solution* to separate 100-mL volumetric flasks. Dilute the content of each flask with *Diluent* to volume, and mix to obtain solutions having known concentrations of 0.10, 0.25, and 0.50 $\mu\text{g}/\text{mL}$ of potassium, respectively.

Sample stock solution: 0.5 mg/mL of Sodium Hydroxide

Sample solution: 50 $\mu\text{g}/\text{mL}$ of Sodium Hydroxide in *Diluent*, prepared from the *Sample stock solution*

Instrumental conditions

(See [Atomic Absorption Spectroscopy \(852\)](#).)

Mode: Atomic absorption spectrophotometry

Analytical wavelength: 766.5 nm (potassium emission line)

Lamp: Potassium hollow-cathode

Flame: Air–acetylene

Blank: *Diluent*

Standard curve

Samples: Standard solutions**Plot:** Absorbance values versus their corresponding concentration ($\mu\text{g/mL}$) of potassium. The correlation coefficient is NLT 0.99.**Analysis****Sample:** Sample solution

From the Standard curve, determine the concentration of potassium in the Sample solution.

Calculate the percentage of potassium in the portion of Sodium Hydroxide taken:

$$\text{Result} = (C_s/C_u) \times 100$$

 C_s = concentration of potassium in the Sample solution from the Standard curve ($\mu\text{g/mL}$) C_u = concentration of Sodium Hydroxide in the Sample solution ($\mu\text{g/mL}$)**Acceptance criteria:** NMT 0.5%**SPECIFIC TESTS**

- **INSOLUBLE SUBSTANCES AND ORGANIC MATTER:** A solution (1 in 20) is complete, clear, and colorless to slightly colored.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SODIUM HYDROXIDE	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 48(6)

Current DocID: [GUID-A7D27F1B-918D-41A5-AEE1-EE36088E2C7E_3_en-US](#)**Previous DocID:** [GUID-A7D27F1B-918D-41A5-AEE1-EE36088E2C7E_1_en-US](#)**DOI:** https://doi.org/10.31003/USPNF_M76640_03_01**DOI ref:** [cb8je](#)