

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2017
Document Type: USP Monographs
DocId: GUID-3381A0E0-310A-4C99-8CDF-5526EAE73C88_1_en-US
DOI: https://doi.org/10.31003/USPNF_M76370_01_01
DOI Ref: pt42m

© 2025 USPC
Do not distribute

Sodium Citrate and Citric Acid Oral Solution

DEFINITION

Sodium Citrate and Citric Acid Oral Solution is a solution of Sodium Citrate and Citric Acid in a suitable aqueous medium. It contains, in each 100 mL, NLT 2.23 g and NMT 2.46 g of sodium (Na), and NLT 6.11 g and NMT 6.75 g of citrate ($C_6H_5O_7$), equivalent to NLT 9.5 g and NMT 10.5 g of sodium citrate dihydrate ($C_6H_5Na_3O_7 \cdot 2H_2O$), and NLT 6.34 g and NMT 7.02 g of citric acid monohydrate ($C_6H_8O_7 \cdot H_2O$).

IDENTIFICATION

• A. Sodium Citrate and Citric Acid Oral Solution imparts an intense yellow color to a nonluminous flame.

• B.

Sample solution: 2 mL of Oral Solution

Analysis: Add 2 mL of 15% [potassium carbonate TS](#) to the *Sample solution*, boil, and cool. Add 4 mL of [potassium pyroantimonate TS](#).

Acceptance criteria: A dense precipitate is formed (indicates the presence of sodium).

• C.

Sample solution: A dilution of Oral Solution (1 in 20)

Analysis: Add 5 mL of [sodium cobaltinitrite TS](#) to 2 mL of *Sample solution*.

Acceptance criteria: A yellow precipitate is not formed immediately (indicates the absence of potassium).

• D. [IDENTIFICATION TESTS—GENERAL \(191\), Chemical Identification Tests, Citrate](#)

Sample solution: 3–5 drops of Oral Solution

Analysis: Add 20 mL of a mixture of [pyridine](#) and [acetic anhydride](#) (3:1) to the *Sample solution*.

Acceptance criteria: A light red color is produced.

ASSAY

• **SODIUM**

Sodium stock solution: 58.44 mg/mL of [sodium chloride](#) prepared as follows. Transfer 14.61 g of [sodium chloride](#), previously dried at 105° for 2 h, to a 250-mL volumetric flask. Dilute with [water](#) to volume.

Diluent: 1.04 mg/mL of [lithium nitrate](#) in [water](#) (equivalent to 15 mEq per 1000 mL of lithium) with a suitable nonionic surfactant

Standard stock solution: Pipet 50 mL of the *Sodium stock solution* into a 500-mL volumetric flask and dilute with [water](#) to volume.

Standard solution: Dilute 50 μ L of the *Standard stock solution* with *Diluent* to 10 mL.

Sample stock solution: Transfer a volume of Oral Solution, equivalent to 1 g of sodium citrate dihydrate, to a 100-mL volumetric flask and dilute with [water](#) to volume.

Sample solution: Dilute 50 μ L of the *Sample stock solution* with *Diluent* to 10 mL.

Blank: *Diluent*

Instrumental conditions

Mode: Flame photometry

Analytical wavelength: Sodium emission line at 589 nm

Analysis

Samples: *Standard solution* and *Sample solution*

Adjust the flame photometer to read zero with the *Diluent*. Concomitantly determine the sodium flame emission readings for the *Standard solution* and the *Sample solution*.

Calculate the quantity (g) of sodium (Na) in 100 mL of Oral Solution taken:

$$\text{Result} = (R_{U, Na} / R_{S, Na}) \times (W/V) \times F \times (A_r / M_r) \times F_1$$

$R_{U, Na}$ = sodium emission reading of the *Sample solution*

$R_{S, Na}$ = sodium emission reading of the *Standard solution*

W = weight of sodium chloride in the *Sodium stock solution* (g)

V = volume of Oral Solution taken (mL)

F = ratio of the dilution factor of the *Sample solution* to the *Standard solution*, 0.04

A_r = atomic weight of sodium, 22.99

M_r = molecular weight of sodium chloride, 58.44

F_1 = conversion factor for each 100 mL of Oral Solution, 100 mL

Acceptance criteria: 2.23–2.46 g of sodium (Na) in each 100 mL of Oral Solution

• **SODIUM CITRATE**

Cation-exchange column: Mix 10 g of [styrene–divinylbenzene cation-exchange resin](#) with 50 mL of [water](#) in a suitable beaker. Allow the resin to settle and decant the supernatant until a slurry of resin remains. Pour the slurry into a 15-mm × 30-cm glass chromatographic tube (having a sealed-in, coarse-porosity fritted disk and fitted with a stopcock), and allow to settle as a homogeneous bed. Wash the resin bed with about 100 mL of [water](#), closing the stopcock when the [water](#) level is about 2 mm above the resin bed.

Sample solution: Transfer a volume of Oral Solution, equivalent to 1 g of sodium citrate dihydrate, to a 100-mL volumetric flask and dilute with [water](#) to volume.

Titrimetric system

Mode: Direct titration

Titrant: [0.02 N sodium hydroxide VS](#)

Endpoint detection: Visual

Analysis

Sample: *Sample solution*

Pipet 5 mL of the *Sample solution* carefully onto the top of the resin bed in the *Cation-exchange column*. Place a 250-mL conical flask below the column, open the stopcock, and allow to flow until the solution has entered the resin bed. Elute the column with 60 mL of [water](#) at a flow rate of about 5 mL/min, collecting about 65 mL of the eluate. Add 5 drops of [phenolphthalein TS](#) to the eluate, swirl the flask, and titrate with *Titrant*. Record the buret reading and calculate the volume of *Titrant* consumed.

Calculate the quantity (g) of sodium citrate dihydrate ($C_6H_5Na_3O_7 \cdot 2H_2O$) in 100 mL of the Oral Solution taken:

$$\text{Result} = \{[V \times N \times F \times (D/V_s)] - [(M_{r1}/M_{r2}) \times C]\} \times F_1 \times F_2$$

V = volume of *Titrant* consumed by the *Sample solution* (mL)

N = actual normality of the *Titrant* (mEq/mL)

F = equivalency factor, 98.05 mg/mEq for sodium citrate dihydrate

D = dilution factor of the *Sample solution*, 20

V_s = volume of Oral Solution taken (mL)

M_{r1} = molecular weight of sodium citrate dihydrate, 294.10

M_{r2} = molecular weight of citric acid monohydrate, 210.14

C = concentration of citric acid monohydrate in the *Sample solution*, as obtained in the Assay for *Citric Acid* (mg/mL)

F_1 = conversion factor from mg to g, 0.001

F_2 = conversion factor for each 100 mL of Oral Solution, 100 mL

Acceptance criteria: 9.5–10.5 g of sodium citrate dihydrate ($C_6H_5Na_3O_7 \cdot 2H_2O$) in each 100 mL of Oral Solution

• **CITRIC ACID**

Sample solution: Transfer a volume of Oral Solution, equivalent to 0.67 g of citric acid monohydrate, to a 100-mL volumetric flask and dilute with [water](#) to volume.

Titrimetric system

Mode: Direct titration

Titrant: [0.02 N sodium hydroxide VS](#)

Endpoint detection: Visual

Sample: *Sample solution*

Transfer 5 mL of the *Sample solution* to a suitable flask. Add 25 mL of [water](#) and 5 drops of [phenolphthalein TS](#). Titrate with *Titrant* to a pink endpoint. Record the buret reading and calculate the volume of *Titrant* consumed.

Calculate the quantity (g) of citric acid monohydrate ($C_6H_8O_7 \cdot H_2O$) in 100 mL of Oral Solution taken:

$$\text{Result} = V \times N \times F \times (D/V_s) \times F_1 \times F_2$$

V = volume of *Titrant* consumed by the *Sample solution* (mL)

N = actual normality of the *Titrant* (mEq/mL)

F = equivalency factor, 70.05 mg/mEq for citric acid monohydrate

D = dilution factor of the *Sample solution*, 20

V_s = volume of Oral Solution taken (mL)

F_1 = conversion factor from mg to g, 0.001

F_2 = conversion factor for each 100 mL of Oral Solution, 100 mL

Acceptance criteria: 6.34–7.02 g of citric acid monohydrate ($C_6H_8O_7 \cdot H_2O$) in each 100 mL of Oral Solution

PERFORMANCE TESTS

- [DELIVERABLE VOLUME \(698\)](#).

For multiple-unit containers

Acceptance criteria: Meets the requirements

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#).

For single-unit containers

Acceptance criteria: Meets the requirements

SPECIFIC TESTS

- [pH \(791\)](#): 4.0–4.4

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight containers.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SODIUM CITRATE AND CITRIC ACID ORAL SOLUTION	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(6)

Current DocID: [GUID-3381A0E0-310A-4C99-8CDF-5526EAE73C88_1_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M76370_01_01

DOI ref: [pt42m](#)