

Status: Currently Official on 16-Feb-2025  
Official Date: Official as of 01-Dec-2016  
Document Type: NF Monographs  
DocId: GUID-A1AC7D6D-7241-4135-A7BD-BEF72E719E7E\_1\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M76025\\_01\\_01](https://doi.org/10.31003/USPNF_M76025_01_01)  
DOI Ref: i75u5

© 2025 USPC  
Do not distribute

## Sodium Cetostearyl Sulfate

### DEFINITION

Sodium Cetostearyl Sulfate is a mixture of sodium cetyl sulfate and sodium stearyl sulfate. It contains NLT 40.0% of sodium cetyl sulfate ( $C_{16}H_{33}NaSO_4$ ), and the sum of the sodium cetyl sulfate content and sodium stearyl sulfate ( $C_{18}H_{37}NaSO_4$ ) content is NLT 90.0% (both contents calculated on the anhydrous basis). It may contain a suitable buffer.

### IDENTIFICATION

- **A.** The retention times of the two major peaks of *Sample solution C* correspond to those of the *System suitability solution*, as obtained in the Assay.
- **B.** Sodium Cetostearyl Sulfate imparts an intense yellow color to a nonluminous flame.
- **C.**

**Sample solution:** 1.0 mg/mL in [alcohol](#)

**Analysis:** Heat 10 mL of the *Sample solution* to boiling on a water bath, shaking frequently. Filter immediately, and evaporate to dryness.

Dissolve the residue in 7 mL of water, add 3 mL of [diluted hydrochloric acid](#), and evaporate the solution to half its volume. Allow to cool, and filter. To the filtrate add 1 mL of barium chloride solution (60 mg/mL).

**Acceptance criteria:** A white crystalline precipitate is formed.

### ASSAY

#### • PROCEDURE

**System suitability solution:** 5 mg/mL each of [USP Cetyl Alcohol RS](#) and [USP Stearyl Alcohol RS](#) in [alcohol](#)

**Internal standard solution:** 4 mg/mL of [1-heptadecanol](#) in [alcohol](#)

**Sample solution A:** Dissolve 300 mg of Sodium Cetostearyl Sulfate in 50 mL of [alcohol](#), and add 2 mL of the *Internal standard solution* and 48 mL of water. Extract the solution with four 25-mL portions of [pentane](#), adding 10–15 mL of saturated [sodium chloride](#) solution, if necessary, to facilitate the separation of the layers. Combine the organic layers, and reserve the hydroalcoholic layers for the preparation of *Sample solution C* and *Sample solution D*. Wash the organic layer with two 30-mL portions of water, dry over [anhydrous sodium sulfate](#), and filter.

**Sample solution B:** Dissolve 300 mg of Sodium Cetostearyl Sulfate in 50 mL of [alcohol](#), and add 50 mL of water. Extract the solution with four 25-mL portions of [pentane](#), adding 10–15 mL of saturated [sodium chloride](#) solution, if necessary, to facilitate the separation of the layers. Combine the organic layers, wash with two 30-mL portions of water, dry over [anhydrous sodium sulfate](#), and filter.

**Sample solution C:** Transfer 25 mL of the hydroalcoholic solution obtained in the preparation of *Sample solution A* to a 200-mL flask that can be fitted with a reflux condenser. Add 20 mL of [hydrochloric acid](#) and 10 mL of the *Internal standard solution*, and boil under reflux for 2 h. Allow to cool. Extract with four 20-mL portions of [pentane](#). Wash the combined organic layer with two 20-mL portions of water, dry over [anhydrous sodium sulfate](#), and filter.

**Sample solution D:** Transfer 25 mL of the hydroalcoholic solution obtained in the preparation of *Sample solution A* to a 200-mL flask that can be fitted with a reflux condenser. Add 20 mL of [hydrochloric acid](#) and 10 mL of [alcohol](#), and boil under reflux for 2 h. Allow to cool. Extract with four 20-mL portions of [pentane](#). Wash the combined organic layer with two 20-mL portions of water, dry over [anhydrous sodium sulfate](#), and filter.

#### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** GC

**Detector:** Flame ionization

**Column:** 0.25-mm × 25-m fused silica capillary; phase G2

**Temperatures**

**Injection port:** 250°

**Detector:** 250°

**Column:** See [Table 1](#).

**Table 1**

| Initial Temperature (°) | Temperature Ramp (°/min) | Final Temperature (°) | Hold Time at Final Temperature (min) |
|-------------------------|--------------------------|-----------------------|--------------------------------------|
| 150                     | 5                        | 250                   | Duration of analysis                 |

**Carrier gas:** Nitrogen

**Flow rate:** 1 mL/min

**Injection volume:** 1 µL

**Injection type:** Split ratio 100:1

#### System suitability

**Sample:** System suitability solution

#### Suitability requirements

**Resolution:** NLT 4.0 between cetyl alcohol and stearyl alcohol

**Relative standard deviation:** NMT 1.5%

#### Analysis

**Correction for interference:** Inject *Sample solution A* and *Sample solution B* into the chromatograph, record the chromatograms, and measure the areas for the major peaks.

If *Sample solution B* shows a peak at the same retention time as the internal standard peak of *Sample solution A*, calculate the ratio, *R*:

$$R = S_{CB}/S_I$$

$S_{CB}$  = peak response of cetyl alcohol from *Sample solution B*

$S_I$  = peak response with the same retention time as the internal standard of *Sample solution B*

If *R* is less than 300, calculate the corrected area,  $S_{A(corr)}$ , of the peak corresponding to the internal standard of *Sample solution A*:

$$S_{A(corr)} = S_{HA} - (S_I \times S_{CA}/S_{CB})$$

$S_{HA}$  = peak response of the internal standard from *Sample solution A*

$S_I$  = peak response with the same retention time as the internal standard of *Sample solution B*

$S_{CA}$  = peak response of cetyl alcohol from *Sample solution A*

$S_{CB}$  = peak response of cetyl alcohol from *Sample solution B*

Inject *Sample solution C* and *Sample solution D* into the chromatograph, record the chromatograms, and measure the areas for the major peaks. Carry out the *Correction for interference* in the same manner as for *Sample solution A*, and calculate the corrected area of the peak corresponding to the internal standard of *Sample solution C*,  $S_{C(corr)}$ .

**Samples:** System suitability solution, *Sample solution C*, and *Sample solution D*

[**NOTE**—The substances are eluted in the following order: cetyl alcohol, 1-heptadecanol (internal standard), and stearyl alcohol. Identify the cetyl alcohol and stearyl alcohol peaks in the chromatograms of the *Sample solutions* by comparison with the *System suitability solution*.] Calculate the percentage of sodium cetyl sulfate ( $C_{16}H_{33}NaSO_4$ ) in the portion of Sodium Cetostearyl Sulfate taken:

$$\text{Result} = (r_C \times W_{CH})/(S_{C(corr)} \times W_C) \times F \times 100$$

$r_C$  = peak response of cetyl alcohol from *Sample solution C*

$W_{CH}$  = weight of the internal standard added in the preparation of *Sample solution C* (mg)

$S_{C(corr)}$  = corrected area of the peak corresponding to the internal standard of *Sample solution C*

$W_C$  = weight of Sodium Cetostearyl Sulfate taken to prepare *Sample solution C*, calculated on the anhydrous basis (mg)

$F$  = correction factor, 1.421

Calculate the percentage of sodium stearyl sulfate ( $C_{18}H_{37}NaSO_4$ ) in the portion of Sodium Cetostearyl Sulfate taken:

$$\text{Result} = (B_C \times W_{CH}) / (S_{C(\text{corr})} \times W_C) \times F \times 100$$

$B_C$  = peak response of stearyl alcohol from *Sample solution C*

$W_{CH}$  = weight of the internal standard added in the preparation of *Sample solution C* (mg)

$S_{C(\text{corr})}$  = corrected area of the peak corresponding to the internal standard of *Sample solution C*

$W_C$  = weight of Sodium Cetostearyl Sulfate taken to prepare *Sample solution C*, calculated on the anhydrous basis (mg)

$F$  = correction factor, 1.377

#### Acceptance criteria

**Sodium cetyl sulfate:** NLT 40.0% on the anhydrous basis

**Sum of sodium cetyl sulfate and sodium stearyl sulfate:** NLT 90.0% on the anhydrous basis

#### IMPURITIES

##### • LIMIT OF SODIUM CHLORIDE AND SODIUM SULFATE

#### Sodium chloride

**Sample:** 5 g

#### Titrimetric system

**Mode:** Direct titration

**Titrant:** [0.1 N silver nitrate VS](#)

**Endpoint detection:** Potentiometric

**Analysis:** Dissolve the *Sample* in 50 mL of water, and add [diluted nitric acid](#) dropwise until the solution is neutral to blue litmus paper. To the resulting solution add 1 mL of [potassium chromate TS](#) and titrate with *Titrant*.

Calculate the percentage of sodium chloride (NaCl) in the portion of Sodium Cetostearyl Sulfate taken:

$$\text{Result} = (V \times N) / W \times F$$

$V$  = volume of the *Titrant* (mL)

$N$  = actual normality of the *Titrant*

$W$  = weight of Sodium Cetostearyl Sulfate (g)

$F$  = equivalence factor for sodium chloride, 5.844

#### Sodium sulfate

**Dichloroacetic acid solution:** Dilute 67 mL of [dichloroacetic acid](#) with water to 300 mL, and neutralize to blue litmus paper using [ammonia TS](#). Cool, add 33 mL of [dichloroacetic acid](#), and dilute with water to 600 mL.

**Sample:** 0.5 g

#### Titrimetric system

**Mode:** Direct titration

**Titrant:** [0.01 M lead nitrate VS](#)

**Endpoint detection:** Visual

**Analysis:** Dissolve the *Sample* in 20 mL of water, warming gently if necessary, and add 1 mL of a solution containing 0.5 g/L of [dithizone](#) in [acetone](#). If the solution is red, add 1 N [nitric acid](#) dropwise until a bluish-green color is obtained. To the resulting solution add 2.0 mL of *Dichloroacetic acid solution* and 80 mL of [acetone](#), and titrate with *Titrant* until a persistent orange-red color is obtained.

Calculate the percentage of sodium sulfate ( $Na_2SO_4$ ) in the portion of Sodium Cetostearyl Sulfate taken:

$$\text{Result} = (V \times M) / W \times F$$

$V$  = volume of *Titrant* (mL)

$M$  = actual molarity of *Titrant*

$W$  = weight of Sodium Cetostearyl Sulfate (g)

$F$  = equivalence factor for sodium sulfate, 14.20

**Acceptance criteria:** The sum of the percentages of sodium chloride and sodium sulfate is NMT 8.0%.

• **LIMIT OF FREE CETOSTEARYL ALCOHOL**

**Analysis:** Examine the chromatogram of *Sample solution A*, obtained as directed in the Assay.

Calculate the percentage of free cetostearyl alcohol in the portion of Sodium Cetostearyl Sulfate taken:

$$\text{Result} = 100(r_A + r_B) \times W_{IS} / (S_{A(\text{corr})} \times W)$$

$r_A$  = peak response of the cetyl alcohol peak from *Sample solution A*

$r_B$  = peak response of stearyl alcohol from *Sample solution A*

$W_{IS}$  = weight of the internal standard added in the preparation of *Sample solution A* (mg)

$S_{A(\text{corr})}$  = corrected peak area corresponding to the internal standard of *Sample solution A* (see Assay)

$W$  = weight of Sodium Cetostearyl Sulfate taken to prepare *Sample solution A* (mg)

**Acceptance criteria:** NMT 4.0%

## SPECIFIC TESTS

• **ACIDITY OR ALKALINITY**

**Sample:** 500 mg

**Analysis:** Dissolve the *Sample* by heating in a mixture of 10 mL of water and 15 mL of 90% alcohol. Add 0.1 mL of phenolphthalein TS.

**Acceptance criteria:** The resulting solution is colorless. Add 0.1 mL of 0.1 N sodium hydroxide, and the resulting solution becomes red.

• [WATER DETERMINATION \(921\), Method I](#): NMT 1.5%

## ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers. No storage requirements specified.

• **LABELING:** Label it to indicate the name and concentration of any added buffer.

• [USP REFERENCE STANDARDS \(11\)](#):

[USP Cetyl Alcohol RS](#)

[USP Stearyl Alcohol RS](#)

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                            | Expert Committee          |
|----------------------------|------------------------------------------------------------------------------------|---------------------------|
| SODIUM CETOSTEARYL SULFATE | <u><a href="#">Documentary Standards Support</a></u>                               | CE2020 Complex Excipients |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><u><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a></u> | CE2020 Complex Excipients |

**Chromatographic Database Information:** [Chromatographic Database](#)

**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 41(5)

**Current DocID: GUID-A1AC7D6D-7241-4135-A7BD-BEF72E719E7E\_1\_en-US**

**DOI:** [https://doi.org/10.31003/USPNF\\_M76025\\_01\\_01](https://doi.org/10.31003/USPNF_M76025_01_01)

**DOI ref:** [i75u5](#)