

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Aug-2023
Document Type: USP Monographs
DocId: GUID-3EF6E536-301D-4E25-AE11-64F1DE760459_5_en-US
DOI: https://doi.org/10.31003/USPNF_M75810_05_01
DOI Ref: b0x55

© 2025 USPC
Do not distribute

Sodium Ascorbate

$C_6H_7NaO_6$ 198.11

L-Ascorbic acid, monosodium salt;

Monosodium L-ascorbate CAS RN®: 134-03-2.

DEFINITION

Sodium Ascorbate contains NLT 99.0% and NMT 101.0% of sodium ascorbate ($C_6H_7NaO_6$), calculated on the dried basis.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197M

Sample: Use undried Sodium Ascorbate.

Acceptance criteria: Meets the requirements

Change to read:

- B. ▲ The retention time of the ascorbic acid peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay. ▲ (USP 1-Aug-2023)

Change to read:

- C. ▲ Characteristic emission lines for sodium at 330.2, 589.0, and 589.6 nm of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the *Content of Sodium*. ▲ (USP 1-Aug-2023)

ASSAY

Change to read:

- **PROCEDURE**

▲ **Mobile phase:** 50 mM [monobasic sodium phosphate](#). Adjust with [phosphoric acid](#) to a pH of 2.5.

Diluent: Dissolve 73 g of [metaphosphoric acid](#) in 1.0 L of [water](#).

Standard stock solution: 2 mg/mL of [USP Ascorbic Acid RS](#) in *Diluent*

Standard solution: 0.2 mg/mL of [USP Ascorbic Acid RS](#) in *Mobile phase*, from the *Standard stock solution*

Sample stock solution: Transfer 220 mg of Sodium Ascorbate to a 100-mL volumetric flask. Dissolve and dilute with *Diluent* to volume.

Sample solution: 0.22 mg/mL of Sodium Ascorbate in *Mobile phase*, from the *Sample stock solution*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 245 nm

Column: 4.6-mm × 25-cm; 5-μm packing [L96](#)

Temperature

Autosampler: 5°

Column: 10°

Flow rate: 0.8 mL/min

Injection volume: 10 μL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: NMT 2.0, *Standard solution***Relative standard deviation:** NMT 2.0% for the ascorbate peak, *Standard solution***Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of sodium ascorbate ($C_6H_7NaO_6$) in the portion of sample taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (M_{r1}/M_{r2}) \times 100$$

 r_u = peak response of ascorbic acid from the *Sample solution* r_s = peak response of ascorbic acid from the *Standard solution* C_s = concentration of [USP Ascorbic Acid RS](#) in the *Standard solution* (mg/mL) C_u = concentration of Sodium Ascorbate in the *Sample solution* (mg/mL) M_{r1} = molecular weight of sodium ascorbate, 198.11 M_{r2} = molecular weight of ascorbic acid, 176.12**Acceptance criteria:** 99.0%–101.0% on the dried basis▲ (USP 1-Aug-2023)**Add the following:****▲OTHER COMPONENTS****• CONTENT OF SODIUM****Stock aqua regia solution:** Trace metal grade [hydrochloric acid](#) and trace metal grade [nitric acid](#) (3:1) prepared as follows. Add nitric acid to hydrochloric acid and mix. [NOTE—Periodically vent the solution in an appropriate fume hood.]**Diluent:** *Stock aqua regia solution* and deionized water (1:9) prepared as follows. Add 1 volume of *Stock aqua regia solution* to 2 volumes of deionized water. Dilute with additional deionized water to volume, and mix well.**Standard stock solution:** Using a commercially available sodium standard solution in 5% (v/v) [nitric acid](#) solution, pipet an appropriate amount of sodium standard solution into a volumetric flask and dilute with 5% (v/v) [nitric acid](#) solution to obtain a 1000-mg/L sodium solution.**Standard solution A:** Dilute the *Standard stock solution* with *Diluent* to obtain a concentration of 24.0 mg/L.**Standard solution B:** Dilute the *Standard stock solution* with *Diluent* to obtain a concentration of 26.0 mg/L.**Standard solution C:** Dilute the *Standard stock solution* with *Diluent* to obtain a concentration of 48.0 mg/L.**Standard solution D:** Dilute the *Standard stock solution* with *Diluent* to obtain a concentration of 60.0 mg/L.**Standard solution E:** Dilute the *Standard stock solution* with *Diluent* to obtain a concentration of 72.0 mg/L.**Standard solution F:** Dilute the *Standard stock solution* with *Diluent* to obtain a concentration of 84.0 mg/L.**Sample solution:** Transfer 26 mg of Sodium Ascorbate, accurately weighed and equivalent to about 3 mg of sodium, to a 50-mL volumetric flask. Add about 40 mL of *Diluent*, sonicate to dissolve, and dilute with *Diluent* to volume.**Blank:** *Diluent***Instrumental conditions**(See [Plasma Spectrochemistry \(730\)](#).)**Mode:** ICP–OES**Emission wavelength:** About 589.6 nm or optimized wavelength for sodium. For *Identification C*, detect additional sodium emission lines at 330.2 and 589.0 nm. [NOTE—The operating conditions may be developed and optimized based on the manufacturer's recommendation. The wavelengths selected should be demonstrated experimentally to provide sufficient specificity, sensitivity, linearity, accuracy, and precision.]**System suitability****Sample:** *Standard solutions***Suitability requirements****Correlation coefficient:** NLT 0.99, determined from the linear calibration constructed in the *Analysis*, *Standard solutions A–F***Relative standard deviation:** NMT 2.0% from five replicate analyses, *Standard solution D***Analysis****Samples:** *Diluent*, *Standard solutions*, and *Sample solution*Construct a linear calibration curve using the intensity of the emission from the six *Standard solutions*. Determine the emission lines of sodium in each *Standard solution* and the *Sample solution*. Plot the emission values of sodium in the *Standard solutions* versus the

concentration, in mg/L, of sodium, and draw the straight line best fitting the plotted points. From the graph, determine the concentration (C), in mg/L, of sodium in the *Sample solution*.

Calculate the percentage of sodium in the portion of Sodium Ascorbate taken:

$$\text{Result} = C \times (V/W) \times 100$$

C = concentration of sodium in the *Sample solution* (mg/L)

V = volume of the *Sample solution* (L)

W = sample weight (mg)

Acceptance criteria: 11.1%–12.1% on the dried basis▲ (USP 1-Aug-2023)

SPECIFIC TESTS

- [OPTICAL ROTATION \(781S\), Procedures, Specific Rotation](#)

Sample solution: 100 mg/mL in carbon dioxide-free water. Use the solution immediately after preparation.

Acceptance criteria: +103° to +108°

- [pH \(791\)](#)

Sample solution: 100-mg/mL solution

Acceptance criteria: 7.0–8.0

- [LOSS ON DRYING \(731\)](#)

Analysis: Dry under vacuum over phosphorous pentoxide at 60° for 4 h.

Acceptance criteria: NMT 0.25%

ADDITIONAL REQUIREMENTS

- [PACKAGING AND STORAGE:](#) Preserve in tight, light-resistant containers.

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#)

▲ [USP Ascorbic Acid RS](#)▲ (USP 1-Aug-2023)

[USP Sodium Ascorbate RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SODIUM ASCORBATE	Natalia Davydova Scientific Liaison	NBDS2020 Non-botanical Dietary Supplements
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	NBDS2020 Non-botanical Dietary Supplements

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 47(6)

Current DocID: [GUID-3EF6E536-301D-4E25-AE11-64F1DE760459_5_en-US](#)

DOI: https://doi.org/10.31003/USPNF_M75810_05_01

DOI ref: [b0x55](#)