

Status: Currently Official on 16-Feb-2025  
Official Date: Official as of 01-May-2018  
Document Type: USP Monographs  
DocId: GUID-661751B4-CA00-4BB5-A101-EC648869CC41\_3\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M74420\\_03\\_01](https://doi.org/10.31003/USPNF_M74420_03_01)  
DOI Ref: nbh0q

© 2025 USPC  
Do not distribute

## Sargramostim for Injection

### DEFINITION

Sargramostim for Injection is a sterile, lyophilized preparation of Sargramostim. Its biological activity is NLT 73.0% and NMT 146.0% of that stated on the label in USP Sargramostim Units. It contains NLT 90.0% and NMT 110.0% of the total protein content stated on the label.

### IDENTIFICATION

• **A.** The retention times of the peaks of the *Sample solution* do not differ by more than 0.5 min from those of the *Standard solution*, as obtained in the test for *Chromatographic Purity*.

• **B. PEPTIDE MAPPING**

**Solution A:** Trifluoroacetic acid and water (1:1000), filtered and degassed

**Solution B:** Trifluoroacetic acid and acetonitrile (1:1000), filtered and degassed

**Mobile phase:** See [Table 1](#).

**Table 1**

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) |
|---------------|-------------------|-------------------|
| 0             | 100               | 0                 |
| 35            | 65                | 35                |
| 50            | 35                | 65                |

**Digestion solution:** Dissolve 29.4 mg of calcium chloride and 1.8 mg of  $\beta$ -alanine in 2 mL of water. Adjust with hydrochloric acid to a pH of 4.0. Add 0.4 mg of trypsin, and mix.

**Standard solution:** 500  $\mu$ g/mL of [USP Sargramostim RS](#) in water. Transfer 100  $\mu$ L of this solution to a clean test tube, and add 11  $\mu$ L of pH 7.6 buffer solution (see [Reagents, Indicators, and Solutions—Buffer Solutions](#)) containing 0.1 M tris(hydroxymethyl)aminomethane. Add 25  $\mu$ L of *Digestion solution*, and incubate at 37° for 2 h. Quench the reaction by adding 3  $\mu$ L of 20% trifluoroacetic acid.

**Sample solution:** 500  $\mu$ g/mL of sargramostim in water. Transfer 100  $\mu$ L of this solution to a clean test tube, and add 11  $\mu$ L of pH 7.6 buffer solution (see [Reagents, Indicators, and Solutions—Buffer Solutions](#)) containing 0.1 M tris(hydroxymethyl)aminomethane. Add 25  $\mu$ L of *Digestion solution*, and incubate at 37° for 2 h. Quench the reaction by adding 3  $\mu$ L of 20% trifluoroacetic acid.

### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 220 nm

**Column:** 4.6-mm  $\times$  25-cm; 10- $\mu$ m packing L1

**Column temperature:** Ambient

**Flow rate:** 1 mL/min

**Injection volume:** 100  $\mu$ L

### Analysis

**Samples:** *Standard solution* and *Sample solution*

Equilibrate the system with a *Mobile phase* consisting of 100% *Solution A*. Measure the responses for the eight major peaks as defined in the [USP Sargramostim RS](#) Data Sheet.

**Acceptance criteria:** The retention times of the peak responses of the *Sample solution* correspond to those of the *Standard solution* if the retention times of the corresponding peaks do not differ by more than 0.3 min; the peak area ratios for peaks 4, 8, and 10 are between 0.7 and 1.3; and no additional significant peaks or shoulders are found.

## ASSAY

## • PROCEDURE

**Iscove's Modified Dulbecco's medium:** Prepare a mixture of the ingredients in the quantities shown in [Table 2](#) in sufficient water to obtain 1 L of medium, and sterilize by filtration.

**Table 2**

|                                                            |            |
|------------------------------------------------------------|------------|
| Calcium chloride                                           | 165.00 mg  |
| Potassium chloride                                         | 330.00 mg  |
| Potassium nitrate                                          | 0.076 mg   |
| Magnesium sulfate                                          | 97.67 mg   |
| Sodium chloride                                            | 4505.00 mg |
| Sodium bicarbonate                                         | 3024.00 mg |
| Monobasic sodium phosphate                                 | 125.00 mg  |
| Sodium selenite                                            | 0.0173 mg  |
| Glucose                                                    | 4500.00 mg |
| HEPES (4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid) | 5958.00 mg |
| Phenol red                                                 | 15.00 mg   |
| Sodium pyruvate                                            | 110.00 mg  |
| L-Alanine                                                  | 25.00 mg   |
| L-Arginine hydrochloride                                   | 84.00 mg   |
| L-Asparagine                                               | 28.40 mg   |
| L-Aspartic acid                                            | 30.00 mg   |
| L-Cystine dihydrochloride                                  | 91.24 mg   |
| L-Glutamic acid                                            | 75.00 mg   |
| L-Glutamine                                                | 584.00 mg  |
| Glycine                                                    | 30.00 mg   |
| L-Histidine hydrochloride                                  | 42.00 mg   |
| L-Isoleucine                                               | 105.00 mg  |
| L-Leucine                                                  | 105.00 mg  |
| L-Lysine hydrochloride                                     | 146.00 mg  |
| L-Methionine                                               | 30.00 mg   |
| L-Phenylalanine                                            | 66.00 mg   |

|                         |           |
|-------------------------|-----------|
| L-Proline               | 40.00 mg  |
| L-Serine                | 42.00 mg  |
| L-Threonine             | 95.00 mg  |
| L-Tryptophan            | 16.00 mg  |
| L-Tyrosine disodium     | 103.79 mg |
| L-Valine                | 94.00 mg  |
| Biotin                  | 0.013 mg  |
| Calcium pantothenate    | 4.00 mg   |
| Choline chloride        | 4.00 mg   |
| Cyanocobalamin          | 0.013 mg  |
| Folic acid              | 4.00 mg   |
| Inositol                | 7.20 mg   |
| Niacinamide             | 4.00 mg   |
| Pyridoxal hydrochloride | 4.00 mg   |
| Riboflavin              | 0.40 mg   |
| Thiamine                | 4.00 mg   |

**Medium A:** Prepare a mixture of Iscove's Modified Dulbecco's medium with 10% heat-inactivated fetal bovine serum as described in [Table 3](#).

**Table 3**

|                                                                                                                                                                             |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Iscove's Modified Dulbecco's medium                                                                                                                                         | 500 mL |
| Fetal bovine serum (inactivated at 56° for 30 min)                                                                                                                          | 50 mL  |
| Penicillin, streptomycin, and L-glutamine mixture containing, in each mL, 5000 units of penicillin G potassium, 5000 µg of streptomycin sulfate, and 29.2 mg of L-glutamine | 5 mL   |
| Gentamicin (50 mg/mL)                                                                                                                                                       | 0.5 mL |
| 2-Mercaptoethanol                                                                                                                                                           | 0.5 mL |

Prepare aseptically, sterilize by filtration, and store at 2°–8°. Use within 1 month.

**Medium B:** 1 µg/mL of [USP Sargramostim RS](#) in Medium A. Prepare aseptically, sterilize by filtration, and store at 2°–8°. Use within 1 month.

**Standard solution:** 100 ng/mL of [USP Sargramostim RS](#) in Medium A. Dispense aseptically in equal portions, and store at -60° or below. Use within 24 months. Store thawed portions at a temperature between 2° and 8°, and use within 1 month. At the time of use, dilute with Medium A to obtain a solution having a known concentration of 2 ng/mL.

**Sample solution:** Reconstitute Sargramostim for Injection in water, then dilute to a concentration of 2 ng/mL of sargramostim in Medium A.

**Cell culture preparation:** Prepare cell cultures of TF-1 cells (ATCC CRL-2003). Passage the cultures every 3–4 days, using a 1:10 subculture of the cells for up to 3 months. After 3 months, initiate a new culture. Use Medium A containing 0.5% Medium B for passage propagation and storage in the frozen state.

**Cell suspension:** Wash the cells three times in *Medium A*, and adjust the cell concentration to  $5 \times 10^4$  cells/mL in *Medium A*.

**Tritiated thymidine solution:** 1 mL of a solution of tritiated thymidine with a specific activity of 20 Ci/mmol in 49 mL of *Medium A*. Store at 2°–8°. Use within 2 weeks.

**Analysis:** Use a 96-well, flat-bottom microtitration plate with wells arranged in 8 rows (labeled A–H) with 12 wells (numbered 1–12) in each row. Place 50  $\mu$ L of *Medium A* in wells 2–12. Place 100  $\mu$ L of the *Standard solution* or each *Sample solution* or *Medium A* (negative control) in well 1. Make serial dilutions by transferring 50  $\mu$ L from well 1 to well 2, and so on through well 12 (serial two-fold dilutions). Place 50  $\mu$ L of the *Cell suspension* in each well, and incubate the microtitration plate for 72 h at 37° in a 10% carbon dioxide incubator. Following incubation, add 25  $\mu$ L of *Tritiated thymidine solution* to each well, and return the plate to the same incubator for an additional 4–5 h. Before harvesting the cells on a filter mat, prewet the mat filter, using distilled water. [NOTE—The prewetting minimizes background radiation noise.] Using a multiple, automated sample harvesting system, place the incubated plate under the harvesting system. Fill the wells to the top with deionized water. Aspirate the water, and pass it through the collecting filter mat. Repeat the procedure at least five times or until all the cells have been fully harvested. When all wells have been fully harvested, pour 5–10 mL of alcohol on the plate tray, and aspirate the methanol. Repeat the procedure if further drying of the filter mat is desired. [NOTE—The alcohol helps to dry out the filter mat by carrying away the wash fluid.] Remove the filter mat, and repeat the procedure until all plates under test have been harvested.

Dry the filter mat in a drying oven for about 30 min. Place the completely dry filter mats in a beta counter, and determine the amount of radioactivity in each cell well.

Convert the amount of incorporated radioactivity in each well to a percentage of the maximum incorporated radioactivity. If fewer than five values are between 3% and 97% of the maximum revision, repeat the Assay. Using the least-squares method of regression analysis, plot the slope of each test specimen versus the slope of the standard, excluding any values exceeding the maximum of each dilution set.

Calculate the USP Sargramostim Units in each mL of the *Sample solution* in terms of the dilution that gives half-maximal activity. To convert this value to units of protein/mg, divide the USP Sargramostim Units/mL by the weight, in mg/mL, of protein in the initial undiluted solution.

**Acceptance criteria:** The potency is 73.0%–146.0% of the potency stated on the label in terms of USP Sargramostim Units/mg of protein.

## PERFORMANCE TESTS

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meets the requirements for *Content Uniformity*

## SPECIFIC TESTS

### • CHROMATOGRAPHIC PURITY

**Solution A:** Trifluoroacetic acid and water (1:1000), filtered and degassed

**Solution B:** Trifluoroacetic acid and acetonitrile (1:1000), filtered and degassed

**Solution C:** Dissolve 116.9 g of sodium chloride in 2 L of water, adding 2 mL of trifluoroacetic acid.

**Mobile phase:** See [Table 4](#). Make adjustments if necessary (see [Chromatography \(621\), System Suitability](#)).

**Table 4**

| Time<br>(min) | Solution A<br>(%) | Solution B<br>(%) | Solution C<br>(%) |
|---------------|-------------------|-------------------|-------------------|
| 0             | 55                | 25                | 20                |
| 40            | 15                | 65                | 20                |

**Standard solution:** 1 mg/mL of [USP Sargramostim RS](#) in water

**Sample solution:** Reconstitute Sargramostim for Injection in water to obtain a 1 mg/mL solution of sargramostim.

### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 220 nm

**Column:** 4.6-mm × 25-cm; packing L1

**Column temperature:** Ambient

**Flow rate:** 1 mL/min

**Injection volume:** 50  $\mu$ L

### Analysis

**Samples:** *Standard solution* and *Sample solution*

Equilibrate the system with a *Mobile phase* consisting of 55% *Solution A*, 25% *Solution B*, and 20% *Solution C*. After injection of the solution under test, the composition is changed linearly. The major peaks are from hyperglycosylated sargramostim and from the three

glycosylated forms of sargramostim, as indicated in the [USP Sargramostim RS](#) Data Sheet.Calculate the percentage of hyperglycosylated sargramostim in the *Sample solution*:

$$\text{Result} = (r_U/r_T) \times 100$$

 $r_U$  = peak response of hyperglycosylated sargramostim $r_T$  = sum of all the peak responses of sargramostimCalculate the percentage of each of the three glycosylated forms of sargramostim in the *Sample solution*:

$$\text{Result} = (r_U/r_T) \times 100$$

 $r_U$  = peak response of each individual glycosylated form of sargramostim $r_T$  = sum of all the peak responses of all three glycosylated forms of sargramostim

**Acceptance criteria:** The peak responses of the *Sample solution* correspond to those of the *Standard solution*, and no peaks or shoulders are present in the chromatogram of the *Sample solution* that are not present in the chromatogram of the *Standard solution*. NMT 5.6% of hyperglycosylated sargramostim. The percentages of each of the three glycosylated forms of sargramostim, in order of elution, are 25%–42%, 14%–32%, and 35%–53%.

- **CONSTITUTED SOLUTION:** At the time of use, it meets the requirements in [Injections and Implanted Drug Products \(1\)](#).
- **BACTERIAL ENDOTOXINS TEST (85):** NMT 50 USP Endotoxin Units/mg
- **SAFETY:** Meets the requirements in [Biological Reactivity Tests, In Vivo \(88\), Safety Tests—Biologics](#)
- **STERILITY TESTS (71):** It meets the requirements when tested as directed in *Test for Sterility of the Product to Be Examined, Membrane Filtration*.
- **pH (791):** 7.1–7.7, in the solution constituted as directed in the labeling
- **WATER DETERMINATION, Method I (921):** NMT 2.0%

#### ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in hermetic containers at a temperature between 2° and 8°.
- **LABELING:** Label it to state the biological activity in USP Sargramostim Units/vial and the amount of protein/vial.
- **USP REFERENCE STANDARDS (11):**  
[USP Sargamostim RS](#)

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question             | Contact                                                                     | Expert Committee                       |
|----------------------------|-----------------------------------------------------------------------------|----------------------------------------|
| SARGRAMOSTIM FOR INJECTION | <a href="#">Rebecca C. Potts</a><br>Associate Scientific Liaison            | BIO2 Biologics Monographs 2 - Proteins |
| REFERENCE STANDARD SUPPORT | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | BIO2 Biologics Monographs 2 - Proteins |

**Chromatographic Database Information:** [Chromatographic Database](#)

#### Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 49(2)

**Current DocID: GUID-661751B4-CA00-4BB5-A101-EC648869CC41\_3\_en-US****Previous DocID: GUID-661751B4-CA00-4BB5-A101-EC648869CC41\_1\_en-US****DOI: [https://doi.org/10.31003/USPNF\\_M74420\\_03\\_01](https://doi.org/10.31003/USPNF_M74420_03_01)****DOI ref: [nbh0q](#)**