

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2020
 Document Type: USP Monographs
 DocId: GUID-71AC32FC-DD6A-47A2-A75D-E4D4331E487B_6_en-US
 DOI: https://doi.org/10.31003/USPNF_M74200_06_01
 DOI Ref: o4dty

© 2025 USPC
 Do not distribute

Saccharin Sodium

C₇H₄NNaO₃S · 2H₂O

241.20

C₇H₄NNaO₃S

205.17

1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide, sodium salt, dihydrate;

1,2-Benzisothiazolin-3-one 1,1-dioxide sodium salt dihydrate CAS RN®: 6155-57-3.

Anhydrous CAS RN®: 128-44-9.

DEFINITION

Saccharin Sodium contains NLT 98.0% and NMT 102.0% of saccharin sodium (C₇H₄NNaO₃S), calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy: 197K** ▲ (CN 1-MAY-2020)

Sample: Dry at 105° to constant weight.

Acceptance criteria: Meets the requirements

- B.

Sample solution: 100 mg/mL

Potassium pyroantimonate solution: Dissolve 2 g of potassium pyroantimonate in 95 mL of hot water. Cool quickly, and add 50 mL of a potassium hydroxide solution (50 mg/mL) and 1 mL of sodium hydroxide solution (8.5 in 100). Allow to stand for 24 h, filter, and dilute with water to 150 mL.

Analysis: To 10 mL of the **Sample solution** add 2 mL of 15% potassium carbonate, and heat to boiling. No precipitate is formed. Add 4 mL of **Potassium pyroantimonate solution**, and heat to boiling. Allow to cool in ice water and, if necessary, rub the inside of the test tube with a glass rod.

Acceptance criteria: A dense precipitate is formed.

- C. Sodium salts impart an intense yellow color to a nonluminous flame.

ASSAY

- **PROCEDURE**

Solution A: 50 mM dibasic potassium phosphate (K₂HPO₄) buffer in 0.1% (v/v) phosphoric acid solution

Solution B: Methanol

Mobile phase: See Table 1.

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
7.0	90	10

Time (min)	Solution A (%)	Solution B (%)
8.0	5	95
10.0	5	95
10.1	90	10
15.0	90	10

Diluent: Methanol and water (50:50 v/v)

System suitability solution: 0.1 mg/mL of [phthalic anhydride](#) and 0.1 mg/mL of [USP Saccharin Sodium RS](#) in *Diluent*

Standard solution: 0.1 mg/mL of [USP Saccharin Sodium RS](#) in *Diluent*

Sample solution: 0.1 mg/mL of Saccharin Sodium in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 15-cm; 3.5-μm packing [L1](#)

Column temperature: 20 ± 5°

Flow rate: 1.0 mL/min

Injection volume: 10 μL

Run time: 15 min

System suitability

Samples: System suitability solution and Standard solution

[NOTE—The retention times for phthalic anhydride and saccharin sodium are about 6.3 and 7.3 min, respectively. Phthalic anhydride is a potential impurity.]

Suitability requirements

Resolution: NLT 1.5 between the phthalic anhydride and saccharin sodium peaks, *System suitability solution*

Tailing factor: NMT 1.5, *Standard solution*

Relative standard deviation: NMT 0.73% for five replicate injections, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of saccharin sodium in the portion of Saccharin Sodium taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of saccharin sodium from the *Sample solution*

r_S = peak area of saccharin sodium from the *Standard solution*

C_S = concentration of [USP Saccharin Sodium RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Saccharin Sodium in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis

IMPURITIES

- **LIMIT OF TOLUENESULFONAMIDES**

Internal standard solution: 0.25 mg/mL of caffeine in [methylene chloride](#)

Standard stock solution: 20.0 μg/mL of [USP o-Toluenesulfonamide RS](#) and 20.0 μg/mL of [USP p-Toluenesulfonamide RS](#) in [methylene chloride](#)

Standard solution: Evaporate 5.0 mL of *Standard stock solution* to dryness in a stream of nitrogen. Dissolve the residue in 1.0 mL of the *Internal standard solution*.

Sample stock solution: 200 mg/mL in water. If necessary, adjust with [1 N sodium hydroxide](#) or [1 N hydrochloric acid](#) to a pH of 7–8 before final dilution.

Sample solution: Shake 50 mL of the *Sample stock solution* with four quantities each of 50 mL of [methylene chloride](#). Combine the lower layers, dry over [anhydrous sodium sulfate](#), and filter. Wash the filter and the sodium sulfate with 10 mL of [methylene chloride](#). Combine the solution and the washings, and evaporate almost to dryness in a water bath at a temperature not exceeding 40°. Using a small quantity of [methylene chloride](#), quantitatively transfer the residue into a suitable 10-mL tube, evaporate to dryness in a stream of nitrogen, and dissolve the residue in 1.0 mL of the *Internal standard solution*.

Blank solution: Evaporate 200 mL of [methylene chloride](#) to dryness in a water bath at a temperature not exceeding 40°. Dissolve the residue in 1 mL of [methylene chloride](#).

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.53-mm × 10-m fused silica; coated with a 2-μm film of phase G3

Temperatures

Injection port: 250°

Column: 180°

Detector: 250°

Carrier gas: Nitrogen

Flow rate: 10 mL/min

Injection volume: 1 μL

Injection type: Split ratio, 2:1

System suitability

Samples: Standard solution and Blank solution

[NOTE—The substances are eluted in the following order: o-toluenesulfonamide, p-toluenesulfonamide, and caffeine.]

Suitability requirements: No peaks at the retention times for the internal standard, o-toluenesulfonamide, or p-toluenesulfonamide, *Blank solution*

Resolution: NLT 1.5 between o-toluenesulfonamide and p-toluenesulfonamide, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Acceptance criteria: See [Table 2](#). If any peaks due to o-toluenesulfonamide and p-toluenesulfonamide appear in the chromatogram of the *Sample solution*, the ratio of their areas to that of caffeine (internal standard) is NMT the corresponding ratio in the chromatogram of the *Standard solution*.

Table 2

Name	Acceptance Criteria, NMT (ppm)
o-Toluenesulfonamide	10
p-Toluenesulfonamide	10

• LIMIT OF BENZOATE AND SALICYLATE

Sample solution: 50 mg/mL

Analysis: To 10 mL of the *Sample solution* add 5 drops of 6 N acetic acid, and then add 3 drops of [ferric chloride TS](#).

Acceptance criteria: No precipitate or violet color appears.

SPECIFIC TESTS

- [WATER DETERMINATION \(921\), Method I](#): NMT 15.0%

Change to read:

- [READILY CARBONIZABLE SUBSTANCES TEST \(271\)](#)

Matching fluid A: Cobaltous chloride CS, ferric chloride ▲CS, ▲ (ERR 1-May-2020) cupric sulfate CS, and water (0.1:0.4:0.1:4.4)

Sample solution: 40 mg/mL in [sulfuric acid](#) maintained at 48°–50° for 10 min

Acceptance criteria: The *Sample solution* has no more color than *Matching fluid A*, when viewed against a white background.

• ACIDITY OR ALKALINITY

Sample solution: 100 mg/mL in carbon dioxide-free water

Analysis: To 10 mL of the *Sample solution* add 1 drop of [phenolphthalein TS](#).

Acceptance criteria: No red or pink color is produced. Then add 1 drop of [0.1 N sodium hydroxide](#): a red or pink color is produced.

• **CLARITY OF SOLUTION**

[NOTE—The *Sample solution* is to be compared to *Reference suspension A* in diffused daylight 5 min after preparation of *Reference suspension A.*]

Hydrazine solution: 10.0 mg/mL of [hydrazine sulfate](#) in water. [NOTE—Allow to stand for 4–6 h.]

Methenamine solution: Transfer 2.5 g of [methenamine](#) to a 100-mL glass-stoppered flask, add 25.0 mL of water, insert the glass stopper, and mix to dissolve.

Primary opalescent suspension: Transfer 25.0 mL of *Hydrazine solution* to the *Methenamine solution* in the 100-mL glass-stoppered flask.

Mix, and allow to stand for 24 h. [NOTE—This suspension is stable for 2 months, provided it is stored in a glass container free from surface defects. The suspension must not adhere to the glass and must be well mixed before use.]

Opalescence standard: Transfer 15.0 mL of the *Primary opalescent suspension*, dilute with water to 1000 mL, and mix. [NOTE—This suspension should not be used beyond 24 h after preparation.]

Reference suspension A: *Opalescence standard* and water (1 in 20)

Reference suspension B: *Opalescence standard* and water (1 in 10)

Sample solution: 200 mg/mL in water

Analysis

Samples: *Reference suspension A*, *Reference suspension B*, *Sample solution*, and water

Transfer a sufficient portion of the *Sample solution* to a test tube of colorless, transparent, neutral glass with a flat base and an internal diameter of 15–25 mm to obtain a depth of 40 mm. Similarly transfer portions of *Reference suspension A*, *Reference suspension B*, and water to separate matching test tubes. Compare solutions in diffused daylight, viewing vertically against a black background (see [Visual Comparison \(630\)](#)).

[NOTE—The diffusion of light must be such that *Reference suspension A* can readily be distinguished from water, and that *Reference suspension B* can readily be distinguished from *Reference suspension A.*]

Acceptance criteria: The *Sample solution* shows the same clarity as that of water, or its opalescence is NMT that of *Reference suspension A.*

• **COLOR OF SOLUTION**

Diluent: 10-g/L solution of [hydrochloric acid](#)

Standard stock solution: [Ferric chloride CS](#), [cobaltous chloride CS](#), [cupric sulfate CS](#), and *Diluent* (3.0:3.0:2.4:1.6)

Standard solution: *Standard stock solution* and *Diluent* (1 in 100). [NOTE—Prepare the *Standard stock solution* and *Standard solution* immediately before use.]

Sample solution: Use the *Sample solution* from the test for *Clarity of Solution*.

Analysis

Samples: *Standard solution*, *Sample solution*, and water

Transfer a sufficient portion of the *Sample solution* to a test tube of colorless, transparent, neutral glass with a flat base and an internal diameter of 15–25 mm to obtain a depth of 40 mm. Similarly transfer portions of the *Standard solution* and water to separate, matching test tubes. Compare the solutions in diffused daylight, viewing vertically against a white background (see [Visual Comparison \(630\)](#)).

Acceptance criteria: The *Sample solution* has the appearance of water or is not more intensely colored than the *Standard solution*.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at room temperature.

• **LABELING:** Where the quantity of saccharin sodium is indicated in the labeling of any preparation containing Saccharin Sodium, this shall be expressed in terms of saccharin ($C_7H_5NO_3S$).

• **USP REFERENCE STANDARDS (11).**

[USP Saccharin Sodium RS](#)

[USP o-Toluenesulfonamide RS](#)

[USP p-Toluenesulfonamide RS](#)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SACCHARIN SODIUM	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(2)

Current DocID: GUID-71AC32FC-DD6A-47A2-A75D-E4D4331E487B_6_en-US

DOI: https://doi.org/10.31003/USPNF_M74200_06_01

DOI ref: o4dty

OFFICIAL