

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-Nov-2020
 Document Type: USP Monographs
 DocId: GUID-78D2076E-7CB3-48C0-A15F-D87164C9EC5C_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M74170_04_01
 DOI Ref: 6vp1s

© 2025 USPC
 Do not distribute

Saccharin Calcium

$\text{C}_{14}\text{H}_8\text{CaN}_2\text{O}_6\text{S}_2 \cdot 3\frac{1}{2}\text{H}_2\text{O}$ 467.48

$\text{C}_{14}\text{H}_8\text{CaN}_2\text{O}_6\text{S}_2$ 404.44

1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide, calcium salt, hydrate (2:7);

1,2-Benzisothiazolin-3-one 1,1-dioxide calcium salt hydrate (2:7) CAS RN®: 6381-91-5.

Anhydrous CAS RN®: 6485-34-3.

DEFINITION

Change to read:

Saccharin Calcium contains ▲NLT 98.0% and NMT 102.0%▲ (USP 1-May-2020) of saccharin calcium ($\text{C}_{14}\text{H}_8\text{CaN}_2\text{O}_6\text{S}_2$), calculated on the anhydrous basis.

IDENTIFICATION

Change to read:

- A. ▲[SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197K▲ (CN 1-May-2020)

Sample: Dry at 105° to constant weight.

Acceptance criteria: Meets the requirements

- B.

Sample solution: 100 mg/mL

Analysis: To the **Sample solution** add 2 drops of [methyl red TS](#), and neutralize with [6 N ammonium hydroxide](#). Add [3 N hydrochloric acid](#), dropwise, until the solution is acid to the indicator. Add [ammonium oxalate TS](#).

Acceptance criteria: A white precipitate is formed when the ammonium oxalate is added. This precipitate is insoluble in 6 N acetic acid but dissolves in [hydrochloric acid](#).

- C. Calcium salts moistened with [hydrochloric acid](#) impart a transient yellowish-red color to a nonluminous flame.

ASSAY

Change to read:

- **PROCEDURE**

▲**Solution A:** 50 mM [dibasic potassium phosphate](#) (K_2HPO_4) buffer in 0.1% (v/v) [phosphoric acid solution](#)

Solution B: [Methanol](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	90	10
7.0	90	10

Time (min)	Solution A (%)	Solution B (%)
8.0	5	95
10.0	5	95
10.1	90	10
15.0	90	10

Diluent: Methanol and water (50:50 v/v)

System suitability solution: 0.1 mg/mL of [phthalic anhydride](#) and 0.1 mg/mL of [USP Saccharin Calcium RS](#) in *Diluent*

Standard solution: 0.1 mg/mL of [USP Saccharin Calcium RS](#) in *Diluent*

Sample solution: 0.1 mg/mL of Saccharin Calcium in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm × 15-cm; 3.5-μm packing [L1](#)

Column temperature: 20 ± 5°

Flow rate: 1.0 mL/min

Injection volume: 10 μL

Run time: 15 min

System suitability

Samples: System suitability solution and Standard solution

[NOTE—The retention times for phthalic anhydride and saccharin calcium are about 6.3 and 7.3 min, respectively. Phthalic anhydride is a potential impurity.]

Suitability requirements

Resolution: NLT 1.5 between the phthalic anhydride and saccharin calcium peaks, *System suitability solution*

Tailing factor: NMT 1.5, *Standard solution*

Relative standard deviation: NMT 0.73% for five replicate injections, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of saccharin calcium in the portion of Saccharin Calcium taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak area of saccharin calcium from the *Sample solution*

r_S = peak area of saccharin calcium from the *Standard solution*

C_S = concentration of [USP Saccharin Calcium RS](#) in the *Standard solution* (mg/mL)

C_U = concentration of Saccharin Calcium in the *Sample solution* (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis▲ (USP 1-May-2020)

IMPURITIES

- **LIMIT OF TOLUENESULFONAMIDES**

Internal standard solution: 0.25 mg/mL of caffeine in [methylene chloride](#)

Standard stock solution: 20.0 μg/mL of [USP o-Toluenesulfonamide RS](#) and 20.0 μg/mL of [USP p-Toluenesulfonamide RS](#) in [methylene chloride](#)

Standard solution: Evaporate 5.0 mL of *Standard stock solution* to dryness in a stream of nitrogen. Dissolve the residue in 1.0 mL of the *Internal standard solution*.

Sample stock solution: 200 mg/mL in water. If necessary, adjust with [1 N sodium hydroxide](#) or [1 N hydrochloric acid](#) to a pH of 7–8 before final dilution.

Sample solution: Shake 50 mL of the *Sample stock solution* with four quantities each of 50 mL of [methylene chloride](#). Combine the lower layers, dry over [anhydrous sodium sulfate](#), and filter. Wash the filter and the sodium sulfate with 10 mL of [methylene chloride](#). Combine the solution and the washings, and evaporate almost to dryness in a water bath at a temperature not exceeding 40°. Using a small quantity of [methylene chloride](#), quantitatively transfer the residue into a suitable 10-mL tube, evaporate to dryness in a stream of nitrogen, and dissolve the residue in 1.0 mL of the *Internal standard solution*.

Blank solution: Evaporate 200 mL of [methylene chloride](#) to dryness in a water bath at a temperature not exceeding 40°. Dissolve the residue in 1 mL of [methylene chloride](#).

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.53-mm × 10-m fused silica; coated with a 2-μm film of phase G3

Temperatures

Injector: 250°

Column: 180°

Detector: 250°

Carrier gas: Nitrogen

Flow rate: 10 mL/min

Injection volume: 1 μL

Injection type: Split ratio, 2:1

System suitability

Samples: Standard solution and Blank solution

[NOTE—The substances are eluted in the following order: o-toluenesulfonamide, p-toluenesulfonamide, and caffeine.]

Suitability requirements: There are no peaks present in the *Blank solution* at the retention times of the *Internal standard solution*, o-toluenesulfonamide, and p-toluenesulfonamide; *Blank solution*

Resolution: NLT 1.5 between o-toluenesulfonamide and p-toluenesulfonamide, *Standard solution*

Analysis

Samples: Standard solution and Sample solution

Acceptance criteria: See [Table 2](#). If any peaks due to o-toluenesulfonamide and p-toluenesulfonamide appear in the chromatogram obtained with the *Sample solution*, the ratio of their areas to that of the *Internal standard solution* is NMT the corresponding ratio in the chromatogram obtained with the *Standard solution*.

Table 2

Name	Acceptance Criteria, NMT (ppm)
o-Toluenesulfonamide	10
p-Toluenesulfonamide	10

• LIMIT OF BENZOATE AND SALICYLATE

Sample solution: 50 mg/mL

Analysis: To 10 mL of the *Sample solution* add 5 drops of 6 N acetic acid and 3 drops of [ferric chloride TS](#).

Acceptance criteria: No precipitate or violet color appears.

SPECIFIC TESTS

- [WATER DETERMINATION, Method I\(921\)](#): NMT 15.0%

Change to read:

- [READILY CARBONIZABLE SUBSTANCES TEST \(271\)](#)

▲ **Matching fluid A:** [Cobaltous chloride CS](#), [ferric chloride CS](#), [cupric sulfate CS](#), and water (0.1:0.4:0.1:4.4)▲ (USP 1-May-2020)

Sample solution: 40 mg/mL in [sulfuric acid](#)▲ maintained at▲ (USP 1-May-2020) 48°–50° for 10 min

Acceptance criteria: The *Sample solution* has no more color than *Matching fluid A*, when viewed against a white background.

• CLARITY OF SOLUTION

[NOTE—The *Sample solution* is to be compared to *Reference suspension A* and to water in diffused daylight 5 min after preparation of *Reference suspension A*.]

Diluent: 200-g/L solution of [sodium acetate](#)

Hydrazine solution: 10.0 mg/mL of [hydrazine sulfate](#). [NOTE—Allow to stand for 4–6 h.]

Methenamine solution: Transfer 2.5 g of [methenamine](#) to a 100-mL glass-stoppered flask, add 25.0 mL of water, insert the glass stopper, and mix to dissolve.

Primary opalescent suspension: Transfer 25.0 mL of *Hydrazine solution* to the *Methenamine solution* in the 100-mL glass-stoppered flask.

Mix, and allow to stand for 24 h. [NOTE—This suspension is stable for 2 months, provided it is stored in a glass container free from surface defects. The suspension must not adhere to the glass and must be well mixed before use.]

Opalescence standard: Transfer 15.0 mL of the *Primary opalescent suspension* and dilute to 1000 mL. [NOTE—This suspension should not be used beyond 24 h after preparation.]

Reference suspension A: *Opalescence standard* and water (1 in 20)

Reference suspension B: *Opalescence standard* and water (1 in 10)

Sample solution: 200 mg/mL in *Diluent*

Analysis

Samples: *Diluent*, *Reference suspension A*, *Reference suspension B*, *Sample solution*, and water

Transfer a sufficient portion of the *Sample solution* to a test tube of colorless, transparent, neutral glass with a flat base and an internal diameter of 15–25 mm to obtain a depth of 40 mm. Similarly transfer portions of *Reference suspension A*, *Reference suspension B*, water, and *Diluent* to separate matching test tubes. Compare solutions in diffused daylight, viewing vertically against a black background (see [Visual Comparison \(630\)](#)). [NOTE—The diffusion of light must be such that *Reference suspension A* can readily be distinguished from water, and that *Reference suspension B* can readily be distinguished from *Reference suspension A*.]

Acceptance criteria: The *Sample solution* shows the same clarity as that of water, or *Diluent*, or its opalescence is NMT that of *Reference suspension A*.

Change to read:

- **COLOR OF SOLUTION**

Diluent A: 200-g/L solution of [sodium acetate](#)

Diluent B: 10-g/L solution of [hydrochloric acid](#)

Standard stock solution: [Ferric chloride CS](#), [Cobaltous chloride CS](#), [cupric sulfate CS](#), and *Diluent B* (3.0:3.0:2.4:1.6)

Standard solution: *Standard stock solution* and *Diluent B* (1:99). [NOTE—Prepare the ▲*Standard stock solution* and ▲ (USP 1-May-2020) *Standard solution* immediately before use.]

Sample solution: Use the *Sample solution* from the test for *Clarity of Solution*.

Analysis

Samples: *Diluent A*, *Standard solution*, *Sample solution*, and water

Transfer a sufficient portion of the *Sample solution* to a test tube of colorless, transparent, neutral glass with a flat base and an internal diameter of 15–25 mm to obtain a depth of 40 mm. Similarly transfer portions of the *Standard solution*, *Diluent A*, and water to separate matching test tubes. Compare solutions in diffused daylight, viewing vertically against a white background (see [Visual Comparison \(630\)](#)).

Acceptance criteria: The *Sample solution* has the appearance of water or *Diluent A*, or is not more intensely colored than the *Standard solution*.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at room temperature.

- **LABELING:** Where the quantity of saccharin calcium is indicated in the labeling of any preparation containing Saccharin Calcium, this shall be expressed in terms of saccharin ($C_7H_5NO_3S$).

Change to read:

- [USP REFERENCE STANDARDS \(11\)](#)

[USP Saccharin Calcium RS](#)

[USP o-Toluenesulfonamide RS](#)

▲ (USP 1-May-2020)

[USP p-Toluenesulfonamide RS](#)

▲ (USP 1-May-2020)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
SACCHARIN CALCIUM	Documentary Standards Support	SE2020 Simple Excipients

Topic/Question	Contact	Expert Committee
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(2)

Current DocID: GUID-78D2076E-7CB3-48C0-A15F-D87164C9EC5C_4_en-US

DOI: https://doi.org/10.31003/USPNF_M74170_04_01

DOI ref: 6vp1s

OFFICIAL