

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2015
Document Type: USP Monographs
DocId: GUID-2646004B-8D87-40BF-8AFE-69A2F89381B1_1_en-US
DOI: https://doi.org/10.31003/USPNF_M73768_01_01
DOI Ref: ge307

© 2025 USPC
Do not distribute

Ritonavir Oral Solution

DEFINITION

Ritonavir Oral Solution contains NLT 90.0% and NMT 110.0% of the labeled amount of ritonavir ($C_{37}H_{48}N_6O_5S_2$).

IDENTIFICATION

- **A.** The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

• PROCEDURE

Buffer: 4.1 g/L of monobasic potassium phosphate

Mobile phase: Acetonitrile, methanol, tetrahydrofuran (stabilizer-free), and *Buffer* (17.5:10:10:62.5). Filter the required solutions individually prior to use.

Diluent: Acetonitrile and *Buffer* (50:50)

Standard solution: 25 µg/mL of [USP Ritonavir RS](#) in *Diluent*

Sample solution: Nominally 25 µg/mL of ritonavir in *Diluent* from a measured volume of Oral Solution

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm × 15-cm; 5-µm packing L7

Column temperature: 40°

Flow rate: 1.5 mL/min

Injection volume: 50 µL

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: 0.8–1.2

Relative standard deviation: NMT 2.0%

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of ritonavir ($C_{37}H_{48}N_6O_5S_2$) in the portion of Oral Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Ritonavir RS](#) in the *Standard solution* (µg/mL)

C_U = nominal concentration of ritonavir in the *Sample solution* (µg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- [DELIVERABLE VOLUME \(698\)](#).

For multiple-unit containers

Acceptance criteria: Meets the requirements

IMPURITIES**• ORGANIC IMPURITIES**

[NOTE—Ritonavir is alkali sensitive. All glassware should be prerinsed with distilled water before use to remove residual detergent contamination.]

Buffer A: 4.1 g/L of monobasic potassium phosphate

Buffer B: 3.8 g/L of monobasic potassium phosphate and 0.25 g/L of dibasic potassium phosphate

Solution A: Acetonitrile and *Buffer A* (50:50)

Solution B: Acetonitrile and *Buffer A* (65:35)

Solution C: Butyl alcohol and *Buffer A* (8:92)

Mobile phase: Acetonitrile, butyl alcohol, tetrahydrofuran (stabilizer-free), and *Buffer B* (18:5:8:69). Adjust with 1 M phosphoric acid or 1 M potassium hydroxide to a pH of 6.3 ± 0.1 , if necessary.

Cleaning solution: Acetonitrile, butyl alcohol, tetrahydrofuran (stabilizer-free), and *Buffer A* (30:8:13:49)

Peak identification solution: Transfer 5–10 g of Oral Solution to a suitable sealed container. Add an amount of citric acid equivalent to 1% by weight of Oral Solution taken, and mix until dissolved. Seal the container, and heat at 70° for 24 h. Transfer 5.0 mL of the thermally degraded sample to a 200-mL volumetric flask. Dissolve and dilute with *Solution B* to volume.

Standard stock solution: 0.1 mg/mL of [USP Ritonavir RS](#) in *Solution A*

Standard solution: 10 µg/mL of [USP Ritonavir RS](#) in *Solution C* from the **Standard stock solution**

Sample stock solution: Nominally 2 mg/mL of ritonavir in *Solution B* prepared as follows. Transfer a measured volume of Oral Solution equivalent to 400 mg of ritonavir to a 200-mL volumetric flask, and dilute with *Solution B* to volume.

Sample solution: Nominally 1 mg/mL of ritonavir prepared as follows. Transfer 25.0 mL of the **Sample stock solution** to a 50-mL volumetric flask, and dilute with *Solution C* to volume. Transfer 15.0 mL of the solution to a 50-mL centrifuge tube that has been previously rinsed with methanol and dried. Add 20.0 mL of heptane, then stopper the tube. Shake the tube vigorously until a uniform emulsion is obtained, making sure to vent periodically. Centrifuge the resulting emulsion for about 5 min. Carefully aspirate off the top layer (heptane), leaving the clear bottom layer (**Sample solution**) in the tube. The centrifuged emulsion will have three distinct layers. The top layer (clear heptane) and the bottom layer (**Sample solution**) are separated by a viscous white cloudy layer. The middle layer should be considered part of the top layer for removal by aspiration. Repeat the extraction steps, and analyze the **Sample solution**.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 240 nm

Column: 4.6-mm × 15-cm; 3-µm packing L26. Wash the column with the **Cleaning solution** after each injection of the **Peak identification solution** and each injection of the **Sample solution** for about 26 min, and equilibrate with **Mobile phase** for about 30 min. Store in the **Cleaning solution** after the analysis is completed.

Column temperature: 60°

Flow rate: 1 mL/min

Injection volume: 50 µL

Run time: 1.8 times the retention time of ritonavir

System suitability

Sample: **Standard solution**

Suitability requirements

Tailing factor: 0.8–1.2

Relative standard deviation: NMT 3.0%

Analysis

Samples: **Peak identification solution**, **Standard solution**, and **Sample solution**

[NOTE—Determine the relative retention value (*r*) for the components listed in [Table 1](#) as directed in [Chromatography \(621\)](#), using the time measured at the baseline deflection of the **Standard solution** chromatogram as the void volume ($t_{M'}$.)]

Calculate the percentage of each impurity in the portion of Oral Solution taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

r_U = peak response of each impurity from the **Sample solution**

r_S = peak response of ritonavir from the **Standard solution**

C_S = concentration of [USP Ritonavir RS](#) in the **Standard solution** (mg/mL)

C_U = nominal concentration of ritonavir in the *Sample solution* (mg/mL) F = relative response factor (see [Table 1](#))**Acceptance criteria:** See [Table 1](#). Disregard peaks less than 0.05%.**Table 1**

Name	Relative Retention (<i>r</i>)	Relative Response Factor	Acceptance Criteria, NMT (%)
Ureidovaline ^{a,b}	0.03	—	—
<i>N</i> -Deacylvaline ritonavir ^{c,d}	0.11	1.0	0.7
Acetamidoalcohol ^{b,e}	0.15	1.0	0.1
Hydroxypropyl carbamate analog ^d	0.24	0.59	0.4
2,5-Thiazolylmethylidicarbamate ^{b,f}		1.37	0.1
Hydroxyritonavir ^{d,g}	0.36	1.0	0.5
Hydantoin aminoalcohol ^{d,h}	0.39	0.73	0.5
Ritonavir hydroperoxide ^{d,i}	0.44	1.0	0.2
Ethyl carbamate analog ^{d,j}	0.45	0.66	1.0
Hydantoin-oxazolidinone derivative ^{b,k}	0.50	0.76	0.2
Ethyl analog ^{b,l}	0.64	1.0	0.1
<i>O</i> -Acyl isomer ^{d,m}	0.74	1.0	0.2
BOC-aminoalcohol ^{b,n}	0.81	—	—
Isobutoxycarbonyl aminoalcohol ^{b,o}		0.74	0.1
Oxazolidinone derivative ^{d,p}	0.87	0.53	0.2
Ureidovaline isobutyl ester ^{b,q}	0.94	1.0	0.1
Ritonavir	1.00	—	—

Name	Relative Retention (r)	Relative Response Factor	Acceptance Criteria, NMT (%)
4-Hydroxy isomer ^{b,r}	1.05	1.0	0.1
3R-Epimer ^{b,s}	1.11	1.0	0.3
Aminoalcohol urea derivative ^{b,t}	1.14	1.0	0.1
3R,5R-Diastereomer ^{b,u}	1.23	1.0	0.1
5R-Epimer ^{b,v}	1.32	1.0	0.1
Diacyl valine urea ^{b,w}	1.70	1.0	0.1
Any individual unspecified degradation product	—	1.0	0.2
Total process impurity	—	—	1.2
Total impurities	—	—	3.0

^a {N-Methyl[(2-isopropyl-4-thiazolyl)methyl]amino}carbonyl-L-valine (not quantified by this method due to solvent front and placebo interferences; controlled as a synthetic impurity in the drug substance).

^b Process impurity.

^c Thiazol-5-ylmethyl (2S,3S,5S)-5-[(S)-2-amino-3-methylbutanamido]-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.

^d Degradation product.

^e Thiazol-5-ylmethyl (2S,3S,5S)-5-acetamido-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.

^f Bis(thiazol-5-ylmethyl) (2S,3S,5S)-3-hydroxy-1,6-diphenylhexane-2,5-diyldicarbamate. (If two peaks appear with a relative retention of 0.24, the second peak is identified as the 2,5-thiazolylmethyl dicarbamate impurity. If a single peak with a relative retention of 0.24 appears, report as *Hydroxypropyl carbamate analog*.)

^g Thiazol-5-ylmethyl (2S,3S,5S)-3-hydroxy-5-[(S)-2-(3-[(2-(2-hydroxypropan-2-yl)thiazol-4-yl)methyl]-3-methylureido)-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.

^h Thiazol-5-ylmethyl (2S,3S,5S)-3-hydroxy-5-[(S)-4-isopropyl-2,5-dioxoimidazolidin-1-yl]-1,6-diphenylhexan-2-ylcarbamate.

ⁱ Thiazol-5-ylmethyl (2S,3S,5S)-5-[(S)-2-(3-[(2-(2-hydroperoxypropan-2-yl)thiazol-4-yl)methyl]-3-methylureido)-3-methylbutanamido]-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate (unspecified degradant; report as *Ethyl carbamate analog* due to possible coelution).

^j Thiazol-5-ylmethyl (2S,3S,5S)-5-[(S)-2-ethoxycarbonylamino-3-methylbutanamido]-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate (possible coelution with ritonavir hydroperoxide).

^k (4S,5S)-Thiazol-5-ylmethyl 4-benzyl-5-[(S)-2-[(S)-4-isopropyl-2,5-dioxoimidazolidin-1-yl]-3-phenylpropyl]-2-oxooxazolidine-3-carboxylate.

^l Thiazol-5-ylmethyl (2S,3S,5S)-5-[(S)-2-3-[(2-ethylthiazol-4-yl)methyl]-3-methylureido]-3-methylbutanamido]-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.

^m (S)-{(2S,3S,5S)-5-Amino-1,6-diphenyl-2-[(thiazol-5-ylmethoxy)carbonylamino]hexan-3-yl} 2-3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido)-3-methylbutanoate (unspecified degradant).

ⁿ Thiazol-5-ylmethyl (2S,3S,5S)-(5-t-butoxycarbonylamino)-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate (may coelute with isobutoxycarbonyl aminoalcohol; report as isobutoxycarbonyl aminoalcohol using a relative response factor of 0.74).

^o Thiazol-5-ylmethyl (2S,3S,5S)-(5-isobutoxycarbonylamino)-3-hydroxy-1,6-diphenylhexan-2-ylcarbamate.

^p (S)-N-[(S)-1-[(4S,5S)-4-Benzyl-2-oxooxazolidin-5-yl]-3-phenylpropan-2-yl]-2-3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido)-3-methylbutanamide (unspecified degradant).

^q (S)-Isobutyl 2-3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido)-3-methylbutanoate.

^r Thiazol-5-ylmethyl (2S,4S,5S)-4-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.

^s Thiazol-5-ylmethyl (2S,3R,5S)-3-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.

^t Bis(thiazol-5-ylmethyl) (2S,2'S,3S,3'S,5S,5'S)-5,5'-carbonylbis(azanediyl)bis(3-hydroxy-1,6-diphenylhexane-5,2-diyl)dicarbamate.

^u Thiazol-5-ylmethyl (2S,3R,5R)-3-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.

^v Thiazol-5-ylmethyl (2S,3S,5R)-3-hydroxy-5-[(S)-2-{3-[(2-isopropylthiazol-4-yl)methyl]-3-methylureido}-3-methylbutanamido]-1,6-diphenylhexan-2-ylcarbamate.

^w (3S,4S,6S,10S,13S,15S,16S)-Bis(thiazol-5-ylmethyl)-4,15-dihydroxy-10-isopropyl-8,11-dioxo-3,6,13,16-tetraabenzylo-2,7,9,12,17-pentaazaoctadecanedioate.

SPECIFIC TESTS

• ALCOHOL CONTENT

Internal standard solution: Transfer 10.0 mL of butyl alcohol to a 200-mL volumetric flask and dilute with methanol to volume.

Internal standard identity solution: Dilute 5.0 mL of the *Internal standard solution* with methanol to 100 mL.

Standard stock solution: 4.0% (v/v) of dehydrated alcohol in methanol

Standard solution: 0.4% (v/v) of dehydrated alcohol prepared as follows. Transfer 10.0 mL of the *Standard stock solution* and 5 mL of the *Internal standard solution* to a 100-mL volumetric flask, and dilute with methanol to volume.

Sample stock solution: Transfer 5.0 mL of Oral Solution to a 50-mL volumetric flask with the aid of several portions of methanol, and dilute with methanol to volume.

Sample solution: Transfer 10.0 mL of the *Sample stock solution* and 5.0 mL of the *Internal standard solution* to a 100-mL volumetric flask, and dilute with methanol to volume.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: GC

Detector: Flame ionization

Column: 0.53-mm × 30-m fused silica capillary; 1-μm layer of phase G16

Temperatures

Injection port: 185°

Detector: 220°

Column: See [Table 2](#).

Table 2

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
40	0	40	5
40	10	145	6
145	20	200	9.75

Carrier gas: Helium

Flow rate: 4.5 mL/min

Makeup gas flow: 30 mL/min

Injection volume: 1 μL

Injection type: Split injection with a split ratio, 4:1

System suitability

Sample: *Standard solution*

Suitability requirements

Tailing factor: 0.8–1.2 for the alcohol peak

Relative standard deviation: NMT 3.0% for the peak area ratio of alcohol to butyl alcohol

Analysis**Samples:** Internal standard identity solution, Standard solution, and Sample solution

Calculate the percentage of alcohol in the portion of Oral Solution taken:

$$\text{Result} = (R_U/R_S) \times C \times D$$

 R_U = peak area ratio of alcohol to butyl alcohol from the *Sample solution* R_S = average peak area ratio of alcohol to butyl alcohol from the *Standard solution* C = concentration of dehydrated alcohol in the *Standard solution* (% v/v) D = dilution factor used to prepare the *Sample solution*, 100**Acceptance criteria:** 40%–47% (v/v) of alcohol (C_2H_6O)

- **MICROBIAL ENUMERATION TESTS (61)** and **TESTS FOR SPECIFIED MICROORGANISMS (62)**: The total aerobic microbial count does not exceed 10^2 cfu/mL.

ADDITIONAL REQUIREMENTS

- **PACKAGING AND STORAGE:** Preserve in tight, light-resistant containers. Store at room temperature.

- **USP REFERENCE STANDARDS (11)**.

[USP Ritonavir RS](#)**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
RITONAVIR ORAL SOLUTION	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 43(4)

Current DocID: GUID-2646004B-8D87-40BF-8AFE-69A2F89381B1_1_en-US**DOI: https://doi.org/10.31003/USPNF_M73768_01_01****DOI ref: [ge307](#)**