

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Jan-2024
Document Type: USP Monographs
DocId: GUID-EE004077-3220-4155-8C77-ED237A65015D_4_en-US
DOI: https://doi.org/10.31003/USPNF_M73605_04_01
DOI Ref: yzvbu

© 2025 USPC
Do not distribute

Rifabutin Capsules

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-rifabutin-caps-20231229.

DEFINITION

Rifabutin Capsules contain NLT 90.0% and NMT 110.0% of the labeled amount of rifabutin ($C_{46}H_{62}N_4O_{11}$).

IDENTIFICATION

- A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Ultraviolet-Visible Spectroscopy:** 197U

Standard solution: 20 µg/mL of [USP Rifabutin RS](#) in [methanol](#), prepared with the aid of sonication. Pass through a filter of 0.5-µm or finer pore size.

Sample solution: Nominally 20 µg/mL of rifabutin prepared as follows. Suspend a quantity of Capsule contents, equivalent to 200 mg of rifabutin, in 20 mL of [methanol](#). Sonicate for 5 min, and pass through a suitable filter of 0.5-µm or finer pore size. Dilute a portion of the filtrate with [methanol](#) to obtain a solution containing 20 µg/mL of rifabutin.

Acceptance criteria: Meet the requirements

- B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

- **PROCEDURE**

Solution A: 13.6 g/L of [monobasic potassium phosphate](#)

Mobile phase: [Acetonitrile](#) and *Solution A* (50:50). Adjust with ▲2 N [sodium hydroxide](#)▲ (RB 1-Jan-2024) to a pH of 6.5 ± 0.1. Pass through a suitable filter of 0.5-µm or finer pore size.

System suitability solution: Dissolve 10 mg of Rifabutin in 2 mL of [methanol](#), add 1 mL of ▲2 N [sodium hydroxide](#)▲ (RB 1-Jan-2024), and allow to stand for 4 min. Add 1 mL of ▲2 N [hydrochloric acid](#)▲ (RB 1-Jan-2024), and dilute with *Mobile phase* to 50 mL. [NOTE—Portions of this solution may be stored in the frozen state for future use.]

Standard solution: 0.5 mg/mL of [USP Rifabutin RS](#) prepared as follows. Transfer an amount of [USP Rifabutin RS](#) to a suitable volumetric flask. Add [acetonitrile](#) to fill 10% of the volume of the flask, and dilute with *Mobile phase* to volume.

Sample solution: Nominally 0.5 mg/mL of rifabutin prepared as follows. Remove the contents of NLT 20 Capsules, weigh, and determine the average weight of the Capsule contents. Transfer a portion of the powder, equivalent to 25 mg of rifabutin, to a 50-mL volumetric flask, add 5 mL of [acetonitrile](#), and dilute with *Mobile phase* to volume. Pass through a suitable filter of 0.5-µm or finer pore size.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 12.5-cm; 5-µm packing [L7](#)

Flow rate: 1 mL/min

Injection volume: 10 µL

Run time: NLT 2 times the retention time of the rifabutin peak

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—The chromatogram of the *System suitability solution* exhibits a major peak for a degradant, two minor peaks for degradants, and a major peak for rifabutin at relative retention times of about 0.5, 0.6, 0.8, and 1.0, respectively.]

Suitability requirements

Resolution: NLT 1.3 between the rifabutin peak and the degradant peak eluting at a relative retention time of about 0.8, *System suitability solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of rifabutin ($C_{46}H_{62}N_4O_{11}$) in the portion of Capsules taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of rifabutin from the *Sample solution*

r_S = peak response of rifabutin from the *Standard solution*

C_S = concentration of [USP Rifabutin RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of rifabutin in the *Sample solution* (mg/mL)

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

- **DISSOLUTION**

Medium: 0.01 N [hydrochloric acid](#); 900 mL

Apparatus 1: 100 rpm

Time: 45 min

Standard solution: A known concentration of [USP Rifabutin RS](#) in *Medium*

Sample solution: A filtered portion of the solution under test, suitably diluted with *Medium* to a concentration similar to that of the *Standard solution*, taking into account its designated potency.

Instrumental conditions

Mode: UV

Analytical wavelength: 280 nm

Analysis

Samples: *Standard solution* and *Sample solution*

Determine the percentage of the labeled amount of rifabutin ($C_{46}H_{62}N_4O_{11}$) dissolved:

$$(A_U/A_S) \times C_S \times D \times (V/L) \times 100$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_S = concentration of the *Standard solution* (mg/mL)

D = dilution factor of the *Sample solution*, if needed

V = volume of *Medium*, 900 mL

L = label claim (mg/Capsule)

Tolerances: NLT 75% (Q) of the labeled amount of rifabutin ($C_{46}H_{62}N_4O_{11}$) is dissolved.

IMPURITIES

Change to read:

- **ORGANIC IMPURITIES**

Solution A: 13.6 g/L of [monobasic potassium phosphate](#) in [water](#)

Solution B: [Acetonitrile](#) and Solution A (40:60). Adjust with 2 N [sodium hydroxide](#) to a pH of 6.5.

Solution C: [Acetonitrile](#) and Solution A (70:30). Adjust with 2 N [sodium hydroxide](#) to a pH of 6.5.

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution B (%)	Solution C (%)
0	90	10
50	84	16
70	65	35
80	55	45
90	40	60
95	90	10
100	90	10

Diluent: [Acetonitrile](#) and **Solution A** (50:50). Adjust with 2 N [sodium hydroxide](#) to a pH of 6.5.

System suitability solution: Prepare as directed in the Assay.

Standard stock solution: 0.75 mg/mL of [USP Rifabutin RS](#) prepared as follows. Transfer an amount of [USP Rifabutin RS](#) to a suitable volumetric flask and dissolve it by adding [acetonitrile](#) to fill 20% of the final volume of the flask. Sonicate, if necessary. Dilute with *Diluent* to volume.

Standard solution: 0.0075 mg/mL of [USP Rifabutin RS](#) in *Diluent* from **Standard stock solution**

Sensitivity solution: 0.75 µg/mL of [USP Rifabutin RS](#) in *Diluent* from **Standard solution**

Sample solution: Nominally 0.75 mg/mL of rifabutin prepared as follows. Remove the contents of NLT 20 Capsules as completely as possible, weigh, and determine the average weight of the Capsule contents. Transfer a portion of the crushed powder, equivalent to 75 mg of rifabutin, to a 100-mL volumetric flask and add 20 mL of [acetonitrile](#). Sonicate for 5 min. Add 50 mL of *Diluent* and sonicate for 5 more min. Dilute with *Diluent* to volume. [NOTE—The **Sample solution** is stable up to 25 h at 10°.]

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm × 15-cm; 3.5-µm packing [L1](#)

Temperatures

Autosampler: 10°

Column: 40°

Flow rate: 1 mL/min

Injection volume: 20 µL

System suitability

Samples: *System suitability solution, Standard solution, and Sensitivity solution*

Suitability requirements

Resolution: NLT 4.0 between the rifabutin 21*R* epimer and rifabutin peaks, *System suitability solution*

Relative standard deviation: NMT 5.0%, *Standard solution*

Signal-to-noise ratio: NLT 10, *Sensitivity solution*

Analysis

Samples: *Standard solution and Sample solution*

Calculate the percentage of any individual impurity in the portion of Capsules taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times P \times (F_1/F_2) \times 100$$

r_u = peak response of each individual impurity from the *Sample solution*

r_s = peak response of rifabutin from the *Standard solution*

C_s = concentration of [USP Rifabutin RS](#) in the *Standard solution* (mg/mL)

C_u = nominal concentration of rifabutin in the *Sample solution* (mg/mL)

P = potency of [USP Rifabutin RS](#) ($\mu\text{g}/\text{mg}$) F_1 = conversion factor (0.001 mg/ μg) F_2 = relative response factor (see [Table 2](#))**Acceptance criteria:** See [Table 2](#). The reporting threshold is 0.1%.**Table 2**

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Rifabutin N-oxide ^a	0.3	0.72	0.70
16-Desacetylrifabutin ^b	0.40	0.92	1.0
Rifabutin 14R epimer ^c	0.63	0.89	1.0
3-Aminorifamycin S ^{d,e}	0.73	—	—
Rifabutin 21R epimer ^f	0.82	0.86	1.0
Rifabutin	1.0	1.0	—
Didehydrorifabutin ^g	1.60	1.0	0.50
Any unspecified impurity	—	1.0	▲0.5▲ (RB 1-Jan-2024)
Total impurities	—	—	4.5

^a (9S,12E,14S,15R,16S,17R,18R,19R,20S,21S,22E,24Z)-16-Acetyloxy-6,18,20-trihydroxy-1'-isobutyl-14-methoxy-7,9,15,17,19,21,25-heptamethylspiro[9,4-(epoxypentadeca[1,11,13]trienimino)-2H-furo[2',3':7,8]naphtho[1,2-d]imidazole-2,4'-piperidine]-5,10,26(3H,9H)-trione 1'-oxide.

^b (9S,12E,14S,15R,16S,17R,18R,19R,20S,21S,22E,24Z)-6,16,18,20-Tetrahydroxy-1'-isobutyl-14-methoxy-7,9,15,17,19,21,25-heptamethylspiro[9,4-(epoxypentadeca[1,11,13]trienimino)-2H-furo[2',3':7,8]naphtho[1,2-d]imidazole-2,4'-piperidine]-5,10,26(3H,9H)-trione.

^c (9S,12E,14R,15R,16S,17R,18R,19R,20S,21S,22E,24Z)-6,18,20-Trihydroxy-1'-isobutyl-14-methoxy-7,9,15,17,19,21,25-heptamethyl-5,10,26-trioxo-3,5,9,10-tetrahydrospiro[9,4-(epoxypentadeca[1,11,13]trienimino)-2H-furo[2',3':7,8]naphtho[1,2-d]imidazole-2,4'-piperidine]-16-yl acetate.

^d (2S,12Z,14E,16S,17S,18R,19R,20R,21S,22R,23S,24E)-8-Amino-5,17,19-trihydroxy-23-methoxy-2,4,12,16,18,20,22-heptamethyl-1,6,9,11-tetraoxo-1,2,6,9-tetrahydro-2,7-(epoxypentadeca[1,11,13]trienimino)naphtho[2,1-b]furan-21-yl acetate.

^e This is a process impurity and is not included in total impurities.

^f (9S,12E,14S,15R,16S,17R,18R,19R,20S,21R,22E,24Z)-6,18,20-Trihydroxy-1'-isobutyl-14-methoxy-7,9,15,17,19,21,25-heptamethyl-5,10,26-trioxo-3,5,9,10-tetrahydrospiro[9,4-(epoxypentadeca[1,11,13]trienimino)-2H-furo[2',3':7,8]naphtho[1,2-d]imidazole-2,4'-piperidine]-16-yl acetate.

^g (9S,12E,14S,15R,16S,17R,18R,19R,20S,21S,22E,24Z)-6,18,20-Trihydroxy-1'-isobutyl-14-methoxy-7,9,15,17,19,21,25-heptamethyl-21-methylene-5,10,26-trioxo-3,5,9,10-tetrahydrospiro[9,4-(epoxypentadeca[1,11,13]trienimino)-2H-furo[2',3':7,8]naphtho[1,2-d]imidazole-2,4'-piperidine]-16-yl acetate.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers, protected from light and from excessive heat. Store at controlled room temperature.

• [USP REFERENCE STANDARDS \(11\)](#).

[USP Rifabutin RS](#)

Topic/Question	Contact	Expert Committee
RIFABUTIN CAPSULES	Documentary Standards Support	SM12020 Small Molecules 1
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 44(4)

Current DocID: GUID-EE004077-3220-4155-8C77-ED237A65015D_4_en-US

DOI: https://doi.org/10.31003/USPNF_M73605_04_01

DOI ref: yzvbu

OFFICIAL