

Status: Currently Official on 16-Feb-2025
 Official Date: Official as of 01-May-2021
 Document Type: USP Monographs
 DocId: GUID-F2FF1BDA-B4F8-4365-ABFD-A17F4FDD2FC8_5_en-US
 DOI: https://doi.org/10.31003/USPNF_M72480_05_01
 DOI Ref: s3wz8

© 2025 USPC
 Do not distribute

Quinapril Hydrochloride

Change to read:

$C_{25}H_{30}N_2O_5 \cdot HCl$ 474.98

3-Isoquinolinecarboxylic acid, 2-[2-[(1-(ethoxycarbonyl)-3-phenylpropyl)amino]-1-oxopropyl]-1,2,3,4-tetrahydro-, monohydrochloride, [3S-[2[R*],3R*]]; (S)-2-[(S)-N-[(S)-1-Carboxy-3-phenylpropyl]alanyl]-1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid, 1-ethyl ester, monohydrochloride;

▲(S)-2-{[(S)-1-Ethoxy-1-oxo-4-phenylbutan-2-yl]-L-alanyl}-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid hydrochloride.▲ (USP 1-May-2021) CAS RN®: 82586-55-8; UNII: 33067B3N2M.

▲Quinapril hydrochloride (acetone solvate):

$C_{25}H_{30}N_2O_5 \cdot HCl \cdot C_3H_6O$ 533.06 CAS RN®: 757964-89-9.▲ (USP 1-May-2021)

DEFINITION

Change to read:

Quinapril Hydrochloride contains NLT 98.5% and NMT 101.5% of quinapril hydrochloride ($C_{25}H_{30}N_2O_5 \cdot HCl$), calculated on the anhydrous basis.

▲If labeled as acetone solvate, it contains NLT 98.5% and NMT 101.5% of quinapril hydrochloride ($C_{25}H_{30}N_2O_5 \cdot HCl$) calculated on the anhydrous and acetone-free basis.▲ (USP 1-May-2021)

IDENTIFICATION

Change to read:

• A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy:** 197K ▲ or 197A▲ (USP 1-May-2021)

• B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• PROCEDURE

Mobile phase: [Acetonitrile](#), [methanesulfonic acid](#), and [water](#) (28: 0.1: 72)

Diluent: [Acetonitrile](#) and pH 6.5 0.025 M [monobasic ammonium phosphate](#) solution (40:60)

System suitability solution: 2 mg/mL of [USP Quinapril Hydrochloride RS](#) and 0.005 mg/mL each of [USP Quinapril Related Compound A RS](#) and [USP Quinapril Related Compound B RS](#) in *Diluent*

Standard solution: 2 mg/mL of [USP Quinapril Hydrochloride RS](#) in *Diluent*

Sample solution: 2 mg/mL of Quinapril Hydrochloride in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 214 nm

Columns

Guard: 4.6-mm × 3-cm; 5-μm packing [L10](#)

Analytical: 4.6-mm × 25-cm; 5-μm packing [L10](#)

Flow rate: 1.5 mL/min**Injection volume:** 10 μ L**Run time:** NLT 3 times retention time of quinapril▲ (USP 1-May-2021)**System suitability****Samples:** System suitability solution▲ and Standard solution▲ (USP 1-May-2021)**Suitability requirements****Resolution:** NLT 1.75 between quinapril and quinapril related compound A; NLT 3.5 between quinapril and quinapril related compound B,

▲System suitability solution

Tailing factor: NMT 2.0, Standard solution▲ (USP 1-May-2021)**Relative standard deviation:** NMT ▲0.55%, Standard solution▲ (USP 1-May-2021)**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of quinapril hydrochloride ($C_{25}H_{30}N_2O_5 \cdot HCl$) in the portion of Quinapril Hydrochloride taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak response of quinapril▲ (USP 1-May-2021) from the Sample solution r_s = peak response of quinapril▲ (USP 1-May-2021) from the Standard solution C_s = concentration of [USP Quinapril Hydrochloride RS](#) in the Standard solution (mg/mL) C_u = concentration of Quinapril Hydrochloride in the Sample solution (mg/mL)**Acceptance criteria:** 98.5%–101.5% on the anhydrous basis▲ and 98.5%–101.5% on the anhydrous and acetone-free basis if labeled as acetone solvate▲ (USP 1-May-2021)**OTHER COMPONENTS**• **CONTENT OF CHLORIDE****Sample:** 100 mg of Quinapril Hydrochloride**Titrimetric system**(See [Titrimetry \(541\)](#).)**Mode:** Direct titration**Titrant:** 0.01 N silver nitrate VS**Analysis:** Transfer the Sample to a 100-mL beaker. Dissolve in 50 mL of [water](#) and 10 mL of [alcohol](#), and acidify with [nitric acid](#). Titrate with Titrant using suitable electrodes. Perform a blank determination, and make any necessary corrections. Each milliliter of 0.01 N silver nitrate is equivalent to 0.3545 mg of chloride.**Acceptance criteria:** 7.2%–7.6%**IMPURITIES**• [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%**Delete the following:**▲• **LIMIT OF RESIDUAL SOLVENTS****Standard stock solution:** Transfer 50 mL of dimethylformamide to a 200-mL volumetric flask. Add 75 mg each of acetone and acetonitrile and 30 mg each of methylene chloride and toluene, each weighed by difference. Dilute with dimethylformamide to volume.**Standard solution:** 4.0 mL of the Standard stock solution, diluted with dimethylformamide to 50 mL**System suitability solution 1:** Transfer 25 mL of dimethylformamide to a 50-mL volumetric flask. Add 35 μ L of dehydrated alcohol and 25 μ L of methylene chloride. Dilute with dimethylformamide to volume. Transfer 1.0 mL of this solution to a 50-mL volumetric flask, and dilute with dimethylformamide to volume.**System suitability solution 2:** 2.0 mL of the Standard stock solution, diluted with dimethylformamide to 50 mL**Sample solution:** 60 mg of Quinapril Hydrochloride to a suitable headspace vial, add 5.0 mL of dimethylformamide, seal, and shake to dissolve.**Chromatographic system**(See [Chromatography \(621\)](#), [System Suitability](#).)**Mode:** GC

Detector: Flame ionization**Column:** 0.53-mm × 30-m fused silica column coated with a 1.0-µm film of phase G16 and a split injection system**Carrier gas:** Helium**Flow rate:** 6 mL/min**Sampler:** Headspace**Vial pressure:** 6.1 psi**Split flow rate:** 100 mL/min (back pressure of 3.5 psi)**Injection volume:** 1 mL**Temperature****Injector port:** 180°**Detector:** 240°**Oven temperature of the headspace sampler:** 60°**Headspace loop and transfer lines:** 65°

[NOTE—The vials are equilibrated for 10 min prior to injection, and injection occurs every 36 min.]

Column temperature: See the temperature table below.

Initial Temperature (°)	Temperature Ramp (°/min)	Final Temperature (°)	Hold Time at Final Temperature (min)
35	0	35	10
35	7	150	4

System suitability**Samples:** System suitability solution 1 and System suitability solution 2

[NOTE—The relative retention times for methylene chloride and alcohol are about 0.94 and 1.0, respectively, System suitability solution 1.]

Suitability requirements**Resolution:** NLT 1.2 between methylene chloride and alcohol, System suitability solution 1**Column efficiency:** NLT 4900 theoretical plates, from the methylene chloride peak of System suitability solution 1**Tailing factor:** NMT 1.7 for the methylene chloride peak, System suitability solution 1**Relative standard deviation:** NMT 15.0%, System suitability solution 2**Analysis****Samples:** Standard solution and Sample solution

Separately calculate the percentages, by weight, of acetone, acetonitrile, methylene chloride, and toluene in the portion of Quinapril Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of the relevant solvent of the Sample solution

r_S = peak response of the relevant solvent of the Standard solution

C_S = concentration of the relevant solvent in the Standard solution (mg/mL)

C_U = nominal concentration of Quinapril Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria**Acetone:** NMT 0.25%**Acetonitrile:** NMT 0.25%**Methylene chloride:** NMT 0.1%**Toluene:** NMT 0.1%▲ (USP 1-May-2021)**Change to read:****• ORGANIC IMPURITIES****Mobile phase, Diluent, System suitability solution, Sample solution, and Chromatographic system:** Proceed as directed in the Assay.**▲Sensitivity solution:** 2 µg/mL of [USP Quinapril Hydrochloride RS](#) in *Diluent*▲ (USP 1-May-2021)**Standard solution:** 5 µg/mL each of [USP Quinapril Related Compound A RS](#) and [USP Quinapril Related Compound B RS](#) in *Diluent*

▲System suitability**Samples:** System suitability solution, Sensitivity solution, and Standard solution**Suitability requirements****Resolution:** NLT 1.75 between quinapril and quinapril related compound A; NLT 3.5 between quinapril and quinapril related compound B,*System suitability solution***Relative standard deviation:** NMT 2.0%, Standard solution**Signal-to-noise ratio:** NLT 10, Sensitivity solution▲ (USP 1-May-2021)**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of quinapril related compound A or quinapril related compound B in the portion of Quinapril Hydrochloride taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

 r_U = peak response of quinapril related compound A or quinapril related compound B from the Sample solution r_S = peak response of quinapril related compound A or quinapril related compound B from the Standard solution C_S = concentration of [USP Quinapril Related Compound A RS](#) or [USP Quinapril Related Compound B RS](#) in the Standard solution (mg/mL) C_U = concentration of Quinapril Hydrochloride in the Sample solution (mg/mL)

Calculate the percentage of any individual unspecified impurity in the portion of Quinapril Hydrochloride taken:

$$\text{Result} = (r_U/r_T) \times 100$$

 r_U = peak response of any individual unspecified impurity from the Sample solution r_T = sum of the responses of all the peaks from the Sample solution**Acceptance criteria:** See [Table 1](#).**Table 1**

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Quinapril related compound B	0.54	0.5
Quinapril	1.00	—
Quinapril related compound A	1.85	0.5
Any individual unspecified impurity	—	0.2
Total impurities	—	2.0

SPECIFIC TESTS**Add the following:****▲• CONTENT OF ACETONE** (if labeled as acetone solvate)**Solution A:** [Water](#)**Solution B:** [Acetonitrile](#)**Mobile phase:** See [Table 2](#).**Table 2**

Time (min)	Solution A (%)	Solution B (%)
0	98	2
2.0	98	2
2.1	40	60
5.0	40	60
5.1	98	2
7.0	98	2

Standard solution: 1.0 mg/mL of [USP Acetone RS](#) in [water](#) prepared as follows. Weigh and transfer an appropriate amount of [USP Acetone RS](#) to a suitable volumetric flask containing 50% of the final volume of [water](#). Dilute with [water](#) to volume.

Sample solution: 10 mg/mL of Quinapril Hydrochloride in [water](#). Sonicate if necessary.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 264 nm

Column: 4.6-mm × 10-cm; 2.6-µm packing [L1](#)

Temperatures

Autosampler: 20°

Column: 35°

Flow rate: 2.0 mL/min

Injection volume: 50 µL

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 1.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of acetone in the portion of Quinapril Hydrochloride as acetone solvate taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of acetone from the Sample solution

r_S = peak response of acetone from the Standard solution

C_S = concentration of [USP Acetone RS](#) in the Standard solution (mg/mL)

C_U = concentration of Quinapril Hydrochloride in the Sample solution (mg/mL)

Acceptance criteria: 7.9%–13.9%▲ (USP 1-May-2021)

• [WATER DETERMINATION \(921\), Method I](#): NMT 1.0%

• [OPTICAL ROTATION \(781S\), Procedures, Specific Rotation](#)

Sample solution: 20 mg/mL in [methanol](#)

Acceptance criteria: +14.4° to +15.4°

ADDITIONAL REQUIREMENTS

Change to read:

• **PACKAGING AND STORAGE:** Preserve in well-closed containers, and store at controlled room temperature. ▲If labeled as an acetone solvate, store in a tight container filled with nitrogen at controlled room temperature.▲ (USP 1-May-2021)

Add the following:

▲ • **LABELING:** Where it is an acetone solvate form, the label so indicates. ▲ (USP 1-May-2021)

Change to read:

• [USP REFERENCE STANDARDS \(11\)](#)

▲ [USP Acetone RS](#) ▲ (USP 1-May-2021)

[USP Quinapril Hydrochloride RS](#)

[USP Quinapril Related Compound A RS](#)

Ethyl [3S-[(2R*), 3a, 11ab]]-1,3,4,6,11,11a-hexahydro-3-methyl-1,4-dioxo-a-(2-phenylethyl)-2H-pyrazino[1,2-b]isoquinoline-2-acetate;

▲ Also known as Ethyl (S)-2-[(3S,11aS)-3-methyl-1,4-dioxo-1,3,4,6,11,11a-hexahydro-2H-pyrazino[1,2-b]isoquinolin-2-yl]-4-phenylbutanoate.

$C_{25}H_{28}N_2O_4$ 420.51 ▲ (USP 1-May-2021)

[USP Quinapril Related Compound B RS](#)

3-Isoquinolinecarboxylic acid, 2-[2-[(1-carboxy-3-phenylpropyl)amino]-1-oxopropyl]-1,2,3,4-tetrahydro-, [3S-[2[R*(R*)],3R*]];

▲ Also known as (S)-2-{[(S)-1-Carboxy-3-phenylpropyl]-L-alanyl}-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid. ▲ (USP 1-May-2021)

$C_{23}H_{26}N_2O_5$ 410.47

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
QUINAPRIL HYDROCHLORIDE	Documentary Standards Support	SM22020 Small Molecules 2
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM22020 Small Molecules 2

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 46(1)

Current DocID: GUID-F2FF1BDA-B4F8-4365-ABFD-A17F4FDD2FC8_5_en-US

DOI: https://doi.org/10.31003/USPNF_M72480_05_01

DOI ref: [s3wz8](#)