

Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-Dec-2024
Document Type: USP Monographs
DocID: GUID-0C1FE207-8097-4F0E-8D7C-E5A554850A9C_15_en-US
DOI: https://doi.org/10.31003/USPNF_M3003_15_01
DOI Ref: p69s5

© 2025 USPC
Do not distribute

Quetiapine Extended-Release Tablets

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click www.uspnf.com/rb-notice-quetiapine-ert-20241122.

DEFINITION

Quetiapine Extended-Release Tablets contain quetiapine fumarate $[(C_{21}H_{25}N_3O_2S)_2 \cdot C_4H_4O_4]$ equivalent to NLT 90.0% and NMT 110.0% of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$).

IDENTIFICATION

• A. **SPECTROSCOPIC IDENTIFICATION TESTS (197), Infrared Spectroscopy:** 197F

Standard solution: Transfer 10 mg of [USP Quetiapine Fumarate RS](#) to a suitable vial. Add 10 mL of [acetone](#) and cap the vial. Sonicate for about 10 min. Allow the solution to equilibrate to room temperature. Evaporate the [acetone](#) completely. Add 2 mL of [chloroform](#). Gently swirl for several minutes. Pass through a suitable filter of 0.45- μ m pore size. Use the filtrate.

Sample solution: Grind NLT 10 Tablets. Transfer an amount of powder equivalent to NLT 10 mg of quetiapine fumarate to a suitable vial. Add 10 mL of [acetone](#) and cap the vial. Sonicate for about 10 min. Allow the solution to equilibrate to room temperature. Evaporate the [acetone](#) completely. Add 2 mL of [chloroform](#). Gently swirl for several minutes. Pass through a suitable filter of 0.45- μ m pore size. Use the filtrate.

Acceptance criteria: Meet the requirements

• B. The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the Assay.

ASSAY

Change to read:

• **PROCEDURE**

Buffer: Dissolve 2.6 g/L of [dibasic ammonium phosphate](#) in [water](#).

Mobile phase: [Methanol](#), [acetonitrile](#), and *Buffer* (54:7:39)

Diluent: [Acetonitrile](#) and [water](#) (50:50)

System suitability stock solution: 0.05 mg/mL of [USP Quetiapine Related Compound H RS](#) in *Mobile phase*

System suitability solution: 0.005 mg/mL of [USP Quetiapine Related Compound H RS](#) and 0.5 mg/mL of [USP Quetiapine System Suitability RS](#) in *Mobile phase* prepared as follows. Transfer 5 mg of [USP Quetiapine System Suitability RS](#) to a 10-mL volumetric flask. Add 7 mL of *Mobile phase* and sonicate to dissolve. Transfer 1 mL of *System suitability stock solution* to the volumetric flask. Dilute with *Mobile phase* to volume.

Standard solution: 0.2 mg/mL of [USP Quetiapine Fumarate RS](#) in *Mobile phase*

Sample stock solution: Transfer NLT 5 Tablets to a homogenizer vessel. Add 50 mL of [acetonitrile](#), swirl to wet, and allow to stand for approximately 10 min. Add an additional 160 mL of *Diluent* and extract for about 10 min. Transfer the contents of the homogenizer to a 500-mL volumetric flask. Dilute with *Diluent* to volume. Pass a portion of the solution through a suitable filter of 0.45- μ m pore size and use the filtrate.

Sample solution: Nominally 0.16–0.18 mg/mL of quetiapine from the *Sample stock solution* in *Mobile phase*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 230 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L7](#)

Flow rate: 1.3 mL/min

Injection volume: 30 μ L

Run time: NLT 2.5 times the retention time of quetiapine

System suitability

Samples: *System suitability solution* and *Standard solution*

[NOTE—See ▲ [Table 14](#) ▲ (RB 1-Dec-2024) for the relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between quetiapine related compound G and quetiapine related compound H; NLT 2.0 between the quetiapine desethoxy and quetiapine peaks; *System suitability solution*

Tailing factor: NMT 1.5, *Standard solution*

Relative standard deviation: NMT 2.0%, *Standard solution*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (M_{r1}/M_{r2}) \times N \times 100$$

r_U = peak response from the *Sample solution*

r_S = peak response from the *Standard solution*

C_S = concentration of [USP Quetiapine Fumarate RS](#) in the *Standard solution* (mg/mL)

C_U = nominal concentration of quetiapine in the *Sample solution* (mg/mL)

M_{r1} = molecular weight of quetiapine free base, 383.51

M_{r2} = molecular weight of quetiapine fumarate, 883.09

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Acceptance criteria: 90.0%–110.0%

PERFORMANCE TESTS

Change to read:

- [Dissolution \(711\)](#).

Test 1

Medium 1: Citrate buffer, pH 4.8. Dissolve 9.6 g of [anhydrous citric acid](#) in 600 mL of [water](#). Add 90 mL of 1 N [sodium hydroxide](#). Dilute with [water](#) to 1 L; 900 mL.

Medium 2: Dissolve 17.9 g of [dibasic sodium phosphate dodecahydrate](#) in 400 mL of [water](#). Add 460 mL of [1 N sodium hydroxide VS](#) and dilute with [water](#) to 1 L; 100 mL.

[NOTE—It is recommended to check the pH of the mixture of 90 mL of *Medium 1* and 10 mL of *Medium 2*, which should be between 6.4 and 6.8. If the pH of the mixture is less than 6.4, 10 mL/L of [1 N sodium hydroxide VS](#) may be added to *Medium 2*. If the pH of the mixture is greater than 6.8, 10 mL/L of [1 N hydrochloric acid VS](#) may be added to *Medium 2*.]

Start the test with 900 mL of *Medium 1*. Add 100 mL of *Medium 2* to the vessel after 5 h of the test and continue the test.

Apparatus 1: 200 rpm

Times: 1, 6, 12, and 20 h

Diluent: *Medium 1* and *Medium 2* (90:10)

Standard solution: ($L/400$) mg/mL of [USP Quetiapine Fumarate RS](#) in *Diluent*, where L is the label claim in mg/Tablet

Sample solution: Pass a suitable portion of the solution under test through a suitable filter.

Instrumental conditions

Mode: UV

Analytical wavelength: About 290 nm

Blank: *Diluent*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration, C_i , of quetiapine ($C_{21}H_{25}N_3O_2S$) in *Medium* (mg/mL) after time point (i):

$$C_i = (A_U/A_S) \times C_S \times (M_{r1}/M_{r2}) \times N$$

A_U = absorbance of the *Sample solution*

A_S = absorbance of the *Standard solution*

C_s = concentration of quetiapine fumarate in the *Standard solution* (mg/mL)

M_{r1} = molecular weight of quetiapine free base, 383.51

M_{r2} = molecular weight of quetiapine fumarate, 883.09

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of quetiapine in *Medium* in the portion of sample withdrawn at each time point (mg/mL)

V = volume of *Medium*, 900 mL for 1 h; 1000 mL for 6-, 12-, and 20-h time points

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the vessel and replaced with *Medium* (mL)

Tolerances: See [Table 1](#).

Table 1

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 20
2	6	47–69
3	12	65–95
4	20	NLT 85

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 2: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 2*.

Medium: [Water](#); 900 mL

Apparatus 1: 100 rpm

Times: 2, 4, 8, and 24 h

Standard solution: 0.03 mg/mL of [USP Quetiapine Fumarate RS](#) in [water](#)

Sample solution: Pass a suitable portion of the solution under test through a suitable filter of 0.45- μ m pore size. Discard the first few milliliters of filtrate. Replace the volume withdrawn with an equal volume of *Medium*. Dilute with *Medium* to a concentration that is similar to that of the *Standard solution*.

Instrumental conditions

Mode: UV

Analytical wavelength: 290 nm

Blank: [Water](#)

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration, C_i , of quetiapine ($C_{21}H_{25}N_3O_2S$) in *Medium* (mg/mL) after each time point (i):

$$C_i = (A_u/A_s) \times C_s \times D \times (M_{r1}/M_{r2}) \times N$$

A_U = absorbance of the *Sample solution* A_S = absorbance of the *Standard solution* C_S = concentration of quetiapine fumarate in the *Standard solution* (mg/mL) D = dilution factor for the *Sample solution*, if needed M_{r1} = molecular weight of quetiapine free base, 383.51 M_{r2} = molecular weight of quetiapine fumarate, 883.09 N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of quetiapine in *Medium* in the portion of sample withdrawn at each time point (mg/mL) V = volume of *Medium*, 900 mL L = label claim (mg/Tablet) V_S = volume of the *Sample solution* withdrawn from the vessel and replaced with *Medium* (mL)**Tolerances:** See [Table 2](#).**Table 2**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	2	5–25
2	4	20–45
3	8	45–75
4	24	NLT 85

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#).[Acceptance Table 2](#).**Test 3:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 3*.**Medium:** [0.1 N hydrochloric acid VS](#); 900 mL**Apparatus 2:** 50 rpm**Times:** 1, 4, and 8 h**Standard solution:** [USP Quetiapine Fumarate RS](#), equivalent to ($L/900$) mg/mL of quetiapine in *Medium*, where L is the label claim in mg/Tablet**Sample solution:** Pass a suitable portion of the solution under test through a suitable full flow filter of 10- μ m pore size.**Instrumental conditions****Mode:** UV**Analytical wavelength:** 295 nm**Cell****For 50-mg Tablets:** 10 mm

For 150-, 200-, 300-, and 400-mg Tablets: 1 mm

Blank: Medium**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result} = (A_U/A_S) \times C_S \times V \times (1/L) \times (M_{r1}/M_{r2}) \times N \times 100$$

 A_U = absorbance of the Sample solution A_S = absorbance of the Standard solution C_S = concentration of quetiapine fumarate in the Standard solution (mg/mL) V = volume of Medium, 900 mL L = label claim (mg/Tablet) M_{r1} = molecular weight of quetiapine free base, 383.51 M_{r2} = molecular weight of quetiapine fumarate, 883.09 N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2**Tolerances:** See [Table 3](#).**Table 3**

Time Point (i)	Time (h)	Amount Dissolved (for 50-, 150-, and 200-mg Tablets) (%)	Amount Dissolved (for 300- and 400-mg Tablets) (%)
1	1	NMT 40	NMT 35
2	4	55–75	45–65
3	8	NLT 85	NLT 80

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#).[Acceptance Table 2](#).**Test 4:** If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 4.**Medium:** [Water](#); 900 mL**Apparatus 2:** 100 rpm**Times:** 1, 4, 8, and 16 h**Standard solution:** [USP Quetiapine Fumarate RS](#), equivalent to $(L/900)$ mg/mL of quetiapine in Medium, where L is the label claim in mg/Tablet**Sample solution:** Pass a suitable portion of the solution under test through a suitable filter.**Instrumental conditions****Mode:** UV**Analytical wavelength:** 250 nm**Blank:** Medium**Analysis****Samples:** Standard solution and Sample solutionCalculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result} = (A_U/A_S) \times C_S \times V \times (1/L) \times (M_{r1}/M_{r2}) \times N \times 100$$

 A_U = absorbance of the Sample solution

A_S = absorbance of the *Standard solution* C_S = concentration of quetiapine fumarate in the *Standard solution* (mg/mL) V = volume of *Medium*, 900 mL L = label claim (mg/Tablet) M_{r1} = molecular weight of quetiapine free base, 383.51 M_{r2} = molecular weight of quetiapine fumarate, 883.09 N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Tolerances: See [Table 4](#). The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Table 4

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (for 50-mg Tablets) (%)	Amount Dissolved (for 150-mg Tablets) (%)	Amount Dissolved (for 200-mg Tablets) (%)	Amount Dissolved (for 300-mg Tablets) (%)	Amount Dissolved (for 400-mg Tablets) (%)
1	1	NMT 20	NMT 20	NMT 20	NMT 15	NMT 15
2	4	30–55	35–55	28–48	22–42	22–42
3	8	60–85	65–90	60–85	52–76	50–75
4	16	NLT 85	NLT 85	NLT 85	NLT 85	NLT 85

Test 5: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 5*.

Medium, Apparatus 1, Times, Standard solution, Sample solution, Instrumental conditions, and Analysis: Proceed as directed in [Dissolution Test 2](#).

Tolerances: See [Table 5](#).

Table 5

Time Point (<i>i</i>)	Time (h)	Amount Dissolved (%)
1	2	10–30
2	4	30–50
3	8	60–80
4	24	NLT 85

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 6: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 6*.

Medium: pH 6.8 phosphate buffer (6.8 g/L of [monobasic potassium phosphate](#) and 0.9 g/L of [sodium hydroxide](#) in [water](#). Adjust with [1 N sodium hydroxide VS](#) or [phosphoric acid](#) to a pH of 6.8, and sonicate for NLT 10 min); 900 mL

Apparatus 2: 100 rpm, with sinker

Times: 1, 4, 8, and 16 h

Mobile phase: [Methanol](#), [trifluoroacetic acid](#), and [water](#) (40: 0.1: 60)

Standard solution: 0.1 mg/mL of [USP Quetiapine Fumarate RS](#) prepared as follows. Transfer an appropriate amount of [USP Quetiapine Fumarate RS](#) to a suitable volumetric flask, and add 5% of the final flask volume of [methanol](#). Sonicate to dissolve, then dilute with [Medium](#) to volume.

Sample solution: Pass a suitable portion of the solution under test through a suitable filter of 0.45- μ m pore size. Discard the first few milliliters of filtrate.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 280 nm

Column: 4.6-mm \times 5.0-cm; 5- μ m packing [L1](#)

Column temperature: 40°

Flow rate: 1.2 mL/min

Injection volume: 10 μ L

Run time: NLT 2.0 times the retention time of quetiapine

System suitability

Sample: Standard solution

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 3.0%

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration, C_i , of quetiapine ($C_{21}H_{25}N_3O_2S$) in [Medium](#) (mg/mL) after each time point (i):

$$C_i = (r_u/r_s) \times C_s \times (M_{r1}/M_{r2}) \times N$$

r_u = peak response from the Sample solution

r_s = peak response from the Standard solution

C_s = concentration of [USP Quetiapine Fumarate RS](#) in the Standard solution (mg/mL)

M_{r1} = molecular weight of quetiapine free base, 383.51

M_{r2} = molecular weight of quetiapine fumarate, 883.09

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_s)] + (C_1 \times V_s)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_s)]] + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times [V - (3 \times V_s)]] + [(C_3 + C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of quetiapine in [Medium](#) in the portion of sample withdrawn at each time point (mg/mL)

V = volume of [Medium](#), 900 mL

L = label claim (mg/Tablet)

V_s = volume of the Sample solution withdrawn from the [Medium](#) (mL)

Tolerances: See [Table 6](#).

Table 6

Time Point (i)	Time (h)	Amount Dissolved (for 50- and 150-mg Tablets) (%)	Amount Dissolved (for 200-, 300-, and 400-mg Tablets) (%)
1	1	NMT 15	NMT 10
2	4	21–41	21–41
3	8	56–76	51–71
4	16	NLT 80	NLT 80

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 7: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 7*.

Acid stage medium: Citrate buffer, pH 4.8 (9.6 g/L of [anhydrous citric acid](#) in [water](#) prepared as follows. Transfer a suitable quantity of [anhydrous citric acid](#) to an appropriate volumetric flask. Dissolve in 60% of the flask volume of [water](#), then add 9% of the flask volume of [1 N sodium hydroxide VS](#). Dilute with [water](#) to volume); 900 mL, deaerated

0.05 M phosphate buffer solution: 17.9 g/L of [dibasic sodium phosphate dodecahydrate](#) solution prepared as follows. Transfer a suitable amount of [dibasic sodium phosphate dodecahydrate](#) to an appropriate volumetric flask containing 40% of the flask volume of [water](#). Add 46% of the flask volume of [1 N sodium hydroxide VS](#) and dilute with [water](#) to volume.

Buffer stage medium: Phosphate buffer, pH 6.6 (add 100 mL of [0.05 M phosphate buffer solution](#) to the *Acid stage medium*; adjust with [1 N sodium hydroxide VS](#) or [1 N hydrochloric acid VS](#) to obtain a pH of 6.6 ± 0.20 , if necessary); 1000 mL

Apparatus 1: 20-mesh basket; 200 rpm

Times: 1 and 4 h in *Acid stage medium*; 6, 10, and 16 h in *Buffer stage medium*. The time in the *Buffer stage medium* includes the time in the *Acid stage medium*.

Procedure: Run the test in the *Acid stage medium* for the times specified. After 5 h, add 100 mL of [0.05 M phosphate buffer solution](#) and continue running the test in *Buffer stage medium* for the times specified.

Standard stock solution: 1.2 mg/mL of [USP Quetiapine Fumarate RS](#) prepared as follows. Transfer an appropriate amount of [USP Quetiapine Fumarate RS](#) into a suitable volumetric flask. Add 40% of the flask volume of [methanol](#) and sonicate to dissolve. Dilute with [water](#) to volume.

Acid stage standard solution: 0.03 mg/mL of [USP Quetiapine Fumarate RS](#) from *Standard stock solution* in *Acid stage medium*

Buffer stage standard solution: 0.03 mg/mL of [USP Quetiapine Fumarate RS](#) from *Standard stock solution* in *Buffer stage medium*

Acid stage sample solution: Pass a portion of the solution under test through a suitable filter, discarding the first portion of filtrate if needed. Dilute the filtrate further with *Acid stage medium*, if needed. Replace the portion of solution removed from the vessel with an equivalent volume of warmed *Acid stage medium*.

Buffer stage sample solution: Pass a portion of the solution under test through a suitable filter, discarding the first portion of filtrate if needed. Dilute the filtrate further with *Buffer stage medium*, if needed. Replace the portion of solution removed from the vessel with an equivalent volume of warmed *Buffer stage medium*.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 290 nm

Blank: *Acid stage medium* or *Buffer stage medium*

System suitability

Samples: *Acid stage standard solution* and *Buffer stage standard solution*

Suitability requirements

Relative standard deviation: NMT 2.0%, *Acid stage standard solution* and *Buffer stage standard solution*

Analysis

Samples: *Acid stage standard solution* and *Acid stage sample solution* or *Buffer stage standard solution* and *Buffer stage sample solution*

Calculate the concentration (C_r) of quetiapine ($C_{21}H_{25}N_3O_2S$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_u/A_s) \times C_s \times D \times (M_{r1}/M_{r2}) \times N$$

A_U = absorbance of the *Acid stage sample solution* or *Buffer stage sample solution* A_S = absorbance of the *Acid stage standard solution* or *Buffer stage standard solution*, corresponding to the related sample solution C_S = concentration of quetiapine fumarate in *Acid stage standard solution* or *Buffer stage standard solution* (mg/mL) D = dilution factor for the *Acid stage sample solution* or *Buffer stage sample solution*, if needed M_{r1} = molecular weight of quetiapine free base, 383.51 M_{r2} = molecular weight of quetiapine fumarate, 883.09 N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V_A \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V_A) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V_B) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{(C_4 \times V_B) + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_5 = \{(C_5 \times V_B) + [(C_4 + C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of quetiapine in *Acid stage medium* or *Buffer stage medium* in the portion of sample withdrawn at each time point (mg/mL) V_A = volume of *Acid stage medium*, 900 mL L = label claim (mg/Tablet) V_S = volume of the *Acid stage sample solution* or *Buffer stage sample solution* withdrawn from the vessel and replaced with *Acid stage medium* or *Buffer stage medium*, respectively (mL) V_B = volume of *Buffer stage medium*, 1000 mL**Tolerances:** See [Table 7](#).**Table 7**

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 15
2	4	28-48
3	6	40-60
4	10	62-82
5	16	NLT 80

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#),[Acceptance Table 2](#).**▲Test 9:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 9*.**Acid stage medium:** Citrate buffer, pH 4.8 (9.6 g/L of [anhydrous citric acid](#) prepared as follows. Transfer an appropriate quantity of [anhydrous citric acid](#) to a suitable volumetric flask and add 60% of the flask volume of [water](#) and dissolve. Then add 9% of the flask

volume of [1 N sodium hydroxide VS](#), and dilute with [water](#) to volume. Adjust with [1 N sodium hydroxide VS](#) to obtain a pH of 4.8, if necessary.); 900 mL

0.05 M phosphate buffer solution: 17.9 g/L of [dibasic sodium phosphate dodecahydrate](#) prepared as follows. Transfer an appropriate quantity of [dibasic sodium phosphate dodecahydrate](#) to a suitable volumetric flask and add 40% of the flask volume of [water](#) and dissolve and then add 46% of the flask volume of [1 N sodium hydroxide VS](#). Dilute with [water](#) to volume.

Buffer stage medium: Phosphate buffer, pH 6.6 (Add 100 mL of [0.05 M phosphate buffer solution](#) to [Acid stage medium](#). Adjust with either [1 N hydrochloric acid VS](#) or [1 N sodium hydroxide VS](#) to obtain a pH of 6.6, if necessary.); 1000 mL

Apparatus 1: 20-mesh basket; 200 rpm

Times: 1 h in [Acid stage medium](#); 6, 12, and 20 h in [Buffer stage medium](#). The time in [Buffer stage medium](#) includes the time in [Acid stage medium](#).

Procedure: Run the test in the [Acid stage medium](#) for the times specified. After 5 h, add 100 mL of [0.05 M phosphate buffer solution](#) and continue running the test in [Buffer stage medium](#) for the times specified.

Buffer: To each liter of [water](#), add 8 mL of [triethylamine](#), and adjust with [glacial acetic acid](#) to a pH of 4.5.

Mobile phase: [Acetonitrile](#) and [Buffer](#) (35:65)

Diluent: [Acetonitrile](#) and [water](#) (5:95)

Standard stock solution: 0.75 mg/mL of [USP Quetiapine Fumarate RS](#) in [Diluent](#). Sonicate to dissolve.

Standard solution: ($L/900$) mg/mL of quetiapine from the [Standard stock solution](#) in [Buffer stage medium](#), where L is the label claim of quetiapine in mg/Tablet

Acid stage sample solution: Pass a portion of the solution under test through a suitable filter.

Buffer stage sample solution: Pass a portion of the solution under test through a suitable filter.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 292 nm

Column: 4.6-mm \times 15.0-cm; 5.0- μ m packing [L1](#)

Column temperature: 30°

Flow rate: 1 mL/min

Injection volume

For 50-mg Tablets: 20 μ L

For 150-, 200-, 300-, and 400-mg Tablets: 10 μ L

Run time: NLT 1.7 times the retention time of quetiapine

System suitability

Sample: [Standard solution](#)

Suitability requirements

Tailing factor: 0.8-1.8

Relative standard deviation: NMT 1.0%

Analysis

Samples: [Standard solution](#), [Acid stage sample solution](#), and [Buffer stage sample solution](#)

Calculate the concentration (C_i) of quetiapine ($C_{21}H_{25}N_3O_2S$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (r_U/r_S) \times C_S \times (M_{r1}/M_{r2}) \times N$$

r_U = peak response of quetiapine from the [Acid stage sample solution](#) or [Buffer stage sample solution](#)

r_S = peak response of quetiapine from the [Standard solution](#)

C_S = concentration of [USP Quetiapine Fumarate RS](#) in the [Standard solution](#) (mg/mL)

M_{r1} = molecular weight of quetiapine free base, 383.51

M_{r2} = molecular weight of quetiapine fumarate, 883.09

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_i = C_i \times V_A \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V_B - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V_B - (2 \times V_S)]] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times [V_B - (3 \times V_S)]] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of quetiapine in *Acid stage medium* or *Buffer stage medium* in the portion of sample withdrawn at each time point (mg/mL)

V_A = volume of *Acid stage medium*, 900 mL

L = label claim (mg/Tablet)

V_B = volume of *Buffer stage medium*, 1000 mL

V_S = volume of the *Acid stage sample solution* or *Buffer stage sample solution* withdrawn from the vessel (mL)

Tolerances: See [Table 8](#).

Table 8

Time Point (i)	Time (h)	Amount Dissolved (for 50-mg Tablets) (%)	Amount Dissolved (for 150-, 200-, 300-, and 400-mg Tablets) (%)
1	1	NMT 21	NMT 21
2	6	33–53	43–63
3	12	56–80	64–88
4	20	NLT 80	NLT 80

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#) ▲ (RB 1-Dec-2024)

Test 10: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 10*.

Medium: 3.72 g/L [potassium chloride](#) in [water](#). Adjust with [hydrochloric acid](#) to a pH of 1.2; 900 mL

Apparatus 1: 100 rpm

Times: 1, 4, and 12 h

Standard solution: 0.016 mg/mL of [USP Quetiapine Fumarate RS](#) in *Medium*

Sample solution: Pass a suitable portion of the solution under test through a suitable filter of 0.45- μ m pore size. Discard the first few milliliters of filtrate. Replace the volume withdrawn with an equal volume of *Medium*. Dilute with *Medium*, if necessary.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 254 nm

Blank: *Medium*

Analysis

Samples: *Standard solution* and *Sample solution*

Calculate the concentration (C_i) of quetiapine ($C_{21}H_{25}N_3O_2S$) in the sample withdrawn from the vessel at each time point (i):

$$C_i = (A_u/A_s) \times C_s \times D \times (M_{r1}/M_{r2}) \times N$$

A_u = absorbance of the *Sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of [USP Quetiapine Fumarate RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Sample solution*, if needed

M_{r1} = molecular weight of quetiapine free base, 383.51

M_{r2} = molecular weight of quetiapine fumarate, 883.09

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_s)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_s]\} \times (1/L) \times 100$$

C_i = concentration of quetiapine in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of *Medium*, 900 mL

L = label claim (mg/Tablet)

V_s = volume of the *Sample solution* withdrawn from the vessel and replaced with *Medium* (mL)

Tolerances: See ▲ [Table 9](#).

Table 9 ▲ (RB 1-Dec-2024)

Time Point (i)	Time (h)	Amount Dissolved (for 150- and 200-mg Tablets) (%)	Amount Dissolved (for 300- and 400-mg Tablets) (%)
1	1	NMT 40	NMT 40
2	4	55–75	50–70
3	12	NLT 85	NLT 85

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#), [Acceptance Table 2](#).

Test 11: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 11*.

Medium: [0.1 N hydrochloric acid VS](#); 900 mL

Apparatus 2: 50 rpm

Times: 1, 4, 8, and 16 h

Standard stock solution: 1.5 mg/mL of [USP Quetiapine Fumarate RS](#) prepared as follows. Transfer a suitable amount of [USP Quetiapine Fumarate RS](#) into an appropriate volumetric flask and add 20% of the flask volume of [methanol](#) to dissolve. Dilute with *Medium* to volume.

Standard solution: Prepare a solution of [USP Quetiapine Fumarate RS](#) at a concentration equivalent to $(L/900)$ mg/mL of quetiapine, from *Standard stock solution* in *Medium*, where L is the label claim in mg/Tablet.

Sample solution: At the times specified, withdraw a portion of the solution under test, centrifuge, and use the supernatant.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 290 nm

Cell

50-mg Tablets: 1 cm

150-, 200-, 300-, and 400-mg Tablets: 0.1 cm

Blank: *Medium*

Analysis

Samples: Standard solution and Sample solution

Calculate the concentration (C_i) of quetiapine ($C_{21}H_{25}N_3O_2S$) in the sample withdrawn from the vessel at each time point (i):

$$C_i = (A_U/A_S) \times C_S \times (M_{r1}/M_{r2}) \times N$$

A_U = absorbance of the Sample solution

A_S = absorbance of the Standard solution

C_S = concentration of [USP Quetiapine Fumarate RS](#) in the Standard solution (mg/mL)

M_{r1} = molecular weight of quetiapine free base, 383.51

M_{r2} = molecular weight of quetiapine fumarate, 883.09

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = \{[C_2 \times (V - V_S)] + (C_1 \times V_S)\} \times (1/L) \times 100$$

$$\text{Result}_3 = \{[C_3 \times [V - (2 \times V_S)]] + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

$$\text{Result}_4 = \{[C_4 \times [V - (3 \times V_S)]] + [(C_3 + C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of quetiapine in the portion of sample withdrawn at time point (i) (mg/mL)

V = volume of Medium, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the Sample solution withdrawn from the vessel (mL)

Tolerances: See [▲ Table 10.](#)

Table 10 ▲ (RB 1-Dec-2024)

Time Point (i)	Time (h)	Amount Dissolved (for 50-mg Tablets) (%)	Amount Dissolved (for 150-mg Tablets) (%)	Amount Dissolved (for 200-mg Tablets) (%)	Amount Dissolved (for 300-mg Tablets) (%)	Amount Dissolved (for 400-mg Tablets) (%)
1	1	NMT 25	NMT 25	NMT 25	NMT 25	NMT 25
2	4	42–60	40–60	35–55	35–55	30–50
3	8	70–90	65–85	62–82	60–80	55–75
4	16	NLT 80	NLT 80	NLT 80	NLT 80	NLT 80

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2.](#)

Test 12: If the product complies with this test, the labeling indicates that it meets USP Dissolution Test 12.

Acid stage medium: Citrate buffer, pH 4.8 (9.6 g/L of [anhydrous citric acid](#) in [water](#)) prepared as follows. Transfer a suitable quantity of [anhydrous citric acid](#) to an appropriate volumetric flask. Dissolve in 60% of the flask volume of [water](#), then add 9% of the flask volume of [1 N sodium hydroxide VS](#). Dilute with [water](#) to volume.; 900 mL

0.05 M phosphate buffer solution: 17.9 g/L of [dibasic sodium phosphate dodecahydrate](#) solution prepared as follows. Transfer a suitable amount of [dibasic sodium phosphate dodecahydrate](#) to an appropriate volumetric flask containing 40% of the flask volume of [water](#). Add

46% of the flask volume of [1 N sodium hydroxide VS](#) and dilute with [water](#) to volume. Adjust the pH of the resulting solution with [1 N sodium hydroxide VS](#) or [1 N hydrochloric acid VS](#), if necessary, so that a mixture of 10 mL of the solution with 90 mL of *Acid stage medium* has a pH of 6.4–6.8.

Buffer stage medium: Phosphate buffer, pH 6.6 ± 0.2 (add 100 mL of 0.05 M phosphate buffer solution to the *Acid stage medium*); 1000 mL

Apparatus 1: 20-mesh basket; 200 rpm

Times: 1 h in *Acid stage medium*; 6 and 14 h in *Buffer stage medium*. The time in the *Buffer stage medium* includes the time in the *Acid stage medium*.

Procedure: Run the test in the *Acid stage medium* for the times specified. After 5 h, add 100 mL of 0.05 M phosphate buffer solution and continue running the test in *Buffer stage medium* for the times specified.

Standard stock solution: 0.55 mg/mL of [USP Quetiapine Fumarate RS](#) in [methanol](#). Sonicate to dissolve.

Standard solution: 0.0275 mg/mL of [USP Quetiapine Fumarate RS](#) from *Standard stock solution* in *Buffer stage medium*

Acid stage sample solution: Pass a portion of the solution under test through a suitable filter. Dilute the filtrate further with *Buffer stage medium*. Replace the portion of solution removed from the vessel with an equivalent volume of *Acid stage medium*.

Buffer stage sample solution: Pass a portion of the solution under test through a suitable filter. Dilute the filtrate further with *Buffer stage medium*. Replace the portion of solution removed from the vessel with an equivalent volume of *Buffer stage medium*.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: UV

Analytical wavelength: 290 nm

Blank: *Buffer stage medium*

Analysis

Samples: *Standard solution*, *Acid stage sample solution*, and *Buffer stage sample solution*

Calculate the concentration (C_1) of quetiapine ($C_{21}H_{25}N_3O_2S$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (A_u/A_s) \times C_s \times D \times (M_{r1}/M_{r2}) \times N$$

A_u = absorbance of the *Acid stage sample solution* or *Buffer stage sample solution*

A_s = absorbance of the *Standard solution*

C_s = concentration of [USP Quetiapine Fumarate RS](#) in the *Standard solution* (mg/mL)

D = dilution factor for the *Acid stage sample solution* or *Buffer stage sample solution*

M_{r1} = molecular weight of quetiapine free base, 383.51

M_{r2} = molecular weight of quetiapine fumarate, 883.09

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V_A \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V_B) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V_B) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

C_i = concentration of quetiapine in *Acid stage medium* or *Buffer stage medium* in the portion of sample withdrawn at each time point (mg/mL)

V_A = volume of *Acid stage medium*, 900 mL

L = label claim (mg/Tablet)

V_B = volume of *Buffer stage medium*, 1000 mL

V_S = volume of the *Acid stage sample solution* or *Buffer stage sample solution* withdrawn from the vessel and replaced with *Acid stage medium* or *Buffer stage medium*, respectively (mL)

Tolerances: See [Table 11](#).**Table 11**▲ (RB 1-Dec-2024)

Time Point (i)	Time (h)	Amount Dissolved (%)
1	1	NMT 20
2	6	50-70
3	14	NLT 80

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#).

[Acceptance Table 2](#).

Test 13: If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 13*.

Medium: 0.1 N [hydrochloric acid](#); 1000 mL

Apparatus 1: 20-mesh basket; 100 rpm

Times: 1, 4, and 10 h

Buffer: Dissolve 7.1 g of [sodium phosphate, dibasic, anhydrous](#) in 1 L of [water](#). Adjust with [phosphoric acid](#) to a pH of 5.5.

Mobile phase: [Acetonitrile](#) and **Buffer** (50:50)

Standard stock solution: 0.29 mg/mL of [USP Quetiapine Fumarate RS](#) prepared as follows. Transfer an appropriate amount of [USP Quetiapine Fumarate RS](#) to a suitable volumetric flask, and add 2.5% of the flask volume of [methanol](#). Sonicate to dissolve and dilute with **Medium** to volume.

Standard solution: 0.029 mg/mL of [USP Quetiapine Fumarate RS](#) from **Standard stock solution** in **Medium**. [NOTE—The concentration is equivalent to 0.025 mg/mL of quetiapine.]

Sample solution: At the time specified, withdraw a portion of the solution under test and replace with the same volume of **Medium**. Pass through a suitable filter of 1- μ m pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained. Dilute with **Medium** to a concentration similar to that of the **Standard solution**.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 254 nm

Column: 4.6-mm \times 25-cm; 5- μ m packing [L7](#)

Column temperature: 30°

Flow rate: 1.2 mL/min

Injection volume: 20 μ L

Run time: NLT 2.0 times the retention time of quetiapine

System suitability

Sample: **Standard solution**

Suitability requirements

Tailing factor: NMT 2.0

Relative standard deviation: NMT 2.0%

Analysis

Samples: **Standard solution** and **Sample solution**

Calculate the concentration (C_i) of quetiapine ($C_{21}H_{25}N_3O_2S$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (r_u/r_s) \times C_s \times D \times (M_{r1}/M_{r2}) \times N$$

r_u = peak response of quetiapine from the **Sample solution**

r_s = peak response of quetiapine from the **Standard solution**

C_s = concentration of [USP Quetiapine Fumarate RS](#) in the **Standard solution** (mg/mL)

D = dilution factor for the **Sample solution**

M_{r1} = molecular weight of quetiapine free base, 383.51 M_{r2} = molecular weight of quetiapine fumarate, 883.09 N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = \{(C_3 \times V) + [(C_2 + C_1) \times V_S]\} \times (1/L) \times 100$$

 C_i = concentration of quetiapine in the portion of sample withdrawn at time point (i) (mg/mL) V = volume of *Medium*, 1000 mL L = label claim (mg/Tablet) V_S = volume of the *Sample solution* withdrawn at each time point and replaced with *Medium* (mL)**Tolerances:** See ▲ [Table 12](#).**Table 12** ▲ (RB 1-Dec-2024)

Time Point (i)	Time (h)	Amount Dissolved (for 50- and 150-mg Tablets) (%)	Amount Dissolved (for 200-, 300-, and 400-mg Tablets) (%)
1	1	NMT 30	NMT 30
2	4	50–70	45–65
3	10	NLT 80	NLT 80

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#),[Acceptance Table 2](#).**Test 14:** If the product complies with this test, the labeling indicates that it meets USP *Dissolution Test 14*.**Acid stage medium:** Citrate buffer, pH 4.8 (9.6 g/L of [citric acid, anhydrous](#) and 3.6 g/L of [sodium hydroxide](#) in [water](#). Adjust with 1 M [citric acid, anhydrous](#) or 1 M [sodium hydroxide](#) to a pH of 4.8.); 900 mL**Buffer stock solution:** 7.1 g/L of [sodium phosphate, dibasic, anhydrous](#) and 18.4 g/L of [sodium hydroxide](#) in [water](#). Determine the volume of this solution required to adjust 900 mL of *Acid stage medium* to a pH of 6.6.**Buffer solution:** Dilute the measured volume of *Buffer stock solution* with [water](#) to 100 mL, if necessary.**Buffer stage medium:** Phosphate buffer, pH 6.6 (add 100 mL of *Buffer solution* to the *Acid stage medium*); 1000 mL**Apparatus 1:** 20-mesh basket; 200 rpm**Times:** 1 and 4 h in *Acid stage medium*; 8 and 16 h in *Buffer stage medium*. The time in the *Buffer stage medium* includes the time in the *Acid stage medium*.**Solution A:** Dissolve 1.36 g of [potassium phosphate, monobasic](#) in 1 L [water](#). Add 1 mL of [triethylamine](#) and adjust with [phosphoric acid](#) to a pH of 6.0.**Mobile phase:** [Acetonitrile](#) and *Solution A* (50:50)**Procedure:** Run the test in the *Acid stage medium* for the times specified. After 5 h, add 100 mL of *Buffer solution* and continue running the test in *Buffer stage medium* for the times specified.**Acid stage standard stock solution:** 0.62 mg/mL of [USP Quetiapine Fumarate RS](#) prepared as follows. Transfer an appropriate amount of [USP Quetiapine Fumarate RS](#) into a suitable volumetric flask. Add 10% of the flask volume of [methanol](#) and sonicate to dissolve, if necessary. Dilute with *Acid stage medium* to volume.**Acid stage standard solution**

For Tablets labeled to contain 50 mg: 0.0124 mg/mL of [USP Quetiapine Fumarate RS](#) from Acid stage standard stock solution in Acid stage medium

For Tablets labeled to contain 150, 200, 300, and 400 mg: 0.0248 mg/mL of [USP Quetiapine Fumarate RS](#) from Acid stage standard stock solution in Acid stage medium

Buffer stage standard stock solution: 0.56 mg/mL of [USP Quetiapine Fumarate RS](#) prepared as follows. Transfer an appropriate amount of [USP Quetiapine Fumarate RS](#) into a suitable volumetric flask. Add 10% of the flask volume of [methanol](#) and sonicate to dissolve. Dilute with Buffer stage medium to volume.

Buffer stage standard solution

For Tablets labeled to contain 50 mg: 0.0112 mg/mL of [USP Quetiapine Fumarate RS](#) from Buffer stage standard stock solution in Buffer stage medium

For Tablets labeled to contain 150, 200, 300, and 400 mg: 0.0224 mg/mL of [USP Quetiapine Fumarate RS](#) from Buffer stage standard stock solution in Buffer stage medium

Acid stage sample solution: At the time specified, withdraw a portion of the solution under test and replace with the same volume of the Acid stage medium. Pass through a suitable filter of 70- μ m pore size. Dilute with Acid stage medium to a concentration similar to that of the corresponding Acid stage standard solution. Pass through a suitable filter of 0.45- μ m pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained.

Buffer stage sample solution: At the time specified, withdraw a portion of the solution under test and replace with the same volume of the Buffer stage medium. Pass through a suitable filter of 70- μ m pore size. Dilute with Buffer stage medium to a concentration that is similar to that of the corresponding Buffer stage standard solution. Pass through a suitable filter of 0.45- μ m pore size, discarding an appropriate volume of filtrate so that a consistent result can be obtained.

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 225 nm

Column: 4.6-mm \times 15-cm; 5- μ m packing [L7](#)

Column temperature: 35°

Flow rate: 2 mL/min

Injection volume: 10 μ L

Run time: NLT 2.7 times the retention time of quetiapine

System suitability

Samples: Acid stage standard solution and Buffer stage standard solution

Suitability requirements

Tailing factor: NMT 2.0 for Acid stage standard solution and Buffer stage standard solution

Relative standard deviation: NMT 2.0% for Acid stage standard solution and Buffer stage standard solution

Analysis

Samples: Acid stage standard solution, Acid stage sample solution, Buffer stage standard solution, and Buffer stage sample solution

Calculate the concentration (C_i) of quetiapine ($C_{21}H_{25}N_3O_2S$) in the sample withdrawn from the vessel at each time point (i):

$$\text{Result}_i = (r_U/r_S) \times C_S \times D \times (M_{r1}/M_{r2}) \times N$$

r_U = peak response of quetiapine from the Acid stage sample solution or Buffer stage sample solution

r_S = peak response of quetiapine from the Acid stage standard solution or Buffer stage standard solution, corresponding to the related sample solution

C_S = concentration of [USP Quetiapine Fumarate RS](#) in Acid stage standard solution or Buffer stage standard solution (mg/mL)

D = dilution factor for the Acid stage sample solution or Buffer stage sample solution, if needed

M_{r1} = molecular weight of quetiapine free base, 383.51

¹

M_{r2} = molecular weight of quetiapine fumarate, 883.09

²

N = number of moles of quetiapine free base per mole of quetiapine fumarate, 2

Calculate the percentage of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at each time point (i):

$$\text{Result}_1 = C_1 \times V_A \times (1/L) \times 100$$

$$\text{Result}_2 = [(C_2 \times V_A) + (C_1 \times V_S)] \times (1/L) \times 100$$

$$\text{Result}_3 = [(C_3 \times V_B) + (C_2 + C_1) \times V_S] \times (1/L) \times 100$$

$$\text{Result}_4 = [(C_4 \times V_B) + (C_3 + C_2 + C_1) \times V_S] \times (1/L) \times 100$$

C_i = concentration of quetiapine in *Acid stage medium* or *Buffer stage medium* in the portion of sample withdrawn at each time point (i) (mg/mL)

V_A = volume of the *Acid stage medium*, 900 mL

L = label claim (mg/Tablet)

V_S = volume of the *Acid stage sample solution* or *Buffer stage sample solution* withdrawn at each time point and replaced with *Acid stage medium* or *Buffer stage medium*, respectively, 10 mL

V_B = volume of *Buffer stage medium*, 1000 mL

Tolerances: See ▲[Table 13](#).

Table 13 ▲ (RB 1-Dec-2024)

Time Point (i)	Time (h)	Amount Dissolved (for 50-mg Tablets) (%)	Amount Dissolved (for 150-mg Tablets) (%)	Amount Dissolved (for 200-mg Tablets) (%)	Amount Dissolved (for 300-mg Tablets) (%)	Amount Dissolved (for 400-mg Tablets) (%)
1	1	NMT 30	NMT 25	NMT 22	NMT 22	NMT 22
2	4	35–55	40–60	32–52	38–58	30–50
3	8	55–75	65–85	57–77	65–85	55–75
4	16	NLT 80	NLT 85	NLT 85	NLT 80	NLT 75

The percentages of the labeled amount of quetiapine ($C_{21}H_{25}N_3O_2S$) dissolved at the times specified conform to [Dissolution \(711\)](#),

[Acceptance Table 2](#).

- [UNIFORMITY OF DOSAGE UNITS \(905\)](#): Meet the requirements

IMPURITIES

Change to read:

- [ORGANIC IMPURITIES](#)

Buffer, Mobile phase, Diluent, System suitability solution, Sample solution, and Chromatographic system: Proceed as directed in the Assay.
System suitability

Sample: *System suitability solution*

[NOTE—See ▲[Table 14](#) ▲ (RB 1-Dec-2024) for the relative retention times.]

Suitability requirements

Resolution: NLT 1.5 between quetiapine related compound G and quetiapine related compound H; NLT 2.0 between the quetiapine desethoxy and quetiapine peaks

Analysis

Sample: *Sample solution*

[NOTE—See ▲[Table 14](#) ▲ (RB 1-Dec-2024) for the relative retention times.]

Calculate the percentage of each degradation product in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (1/F) \times 100$$

r_u = peak response of each degradation product from the *Sample solution* r_s = peak response of quetiapine from the *Sample solution* F = relative response factor for the corresponding degradation product from [▲Table 14▲](#) (RB 1-Dec-2024)**Acceptance criteria:** See [▲Table 14▲](#) (RB 1-Dec-2024) Disregard peaks less than 0.05%.**▲Table 14▲** (RB 1-Dec-2024)

Name	Relative Retention Time	Relative Response Factor	Acceptance Criteria, NMT (%)
Fumaric acid ^a	0.1	—	—
Quetiapine related compound G	0.48	1.4	0.2
Quetiapine related compound H	0.57	1.0	0.2
Quetiapine desethoxy ^b	0.87	—	—
Quetiapine	1.0	—	—
Quetiapine related compound B ^b	1.9	—	—
Any individual unspecified degradation product	—	1.0	0.2
Total degradation products	—	—	0.4

^a Counter ion peak, not to be included in the total degradation products.^b Process impurity controlled in the drug substance. Included for identification purposes only. Not reported for the drug product and not included in the total degradation products.**ADDITIONAL REQUIREMENTS**

- **PACKAGING AND STORAGE:** Preserve in well-closed containers. Store at controlled room temperature.
- **LABELING:** When more than one *Dissolution* test is given, the labeling states the *Dissolution* test used only if *Test 1* is not used.

[USP REFERENCE STANDARDS \(11\)](#)[USP Quetiapine Fumarate RS](#)[USP Quetiapine Related Compound H RS](#)

4-(Dibenzo[b,f][1,4]thiazepin-11-yl)-1-[2-(2-hydroxyethoxy)ethyl]piperazine 1-oxide.

 $C_{21}H_{25}N_3O_3S$ 399.51[USP Quetiapine System Suitability RS](#)

It contains quetiapine fumarate and at least 0.1% of each of the following impurities:

Quetiapine related compound B: 11-(Piperazin-1-yl)dibenzo[b,f][1,4]thiazepine; Quetiapine related compound G: Dibenzo[b,f][1,4]thiazepin-11(10H)-one; and Quetiapine desethoxy: 2-[4-(Dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl]ethanol.

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
QUETIAPINE EXTENDED-RELEASE TABLETS	Documentary Standards Support	SM42020 Small Molecules 4

Topic/Question	Contact	Expert Committee
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM42020 Small Molecules 4

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. PF 41(5)

Current DocID: GUID-0C1FE207-8097-4F0E-8D7C-E5A554850A9C_15_en-US

DOI: https://doi.org/10.31003/USPNF_M3003_15_01

DOI ref: p69s5

OFFICIAL