

Status: Currently Official on 16-Feb-2025
Official Date: Official Prior to 2013
Document Type: USP Monographs
DocId: GUID-70897B2D-D1A0-4EC6-8956-7681166F1D15_1_en-US
DOI: https://doi.org/10.31003/USPNF_M72070_01_01
DOI Ref: Onbl2

© 2025 USPC
Do not distribute

Pyridoxine Hydrochloride Tablets

DEFINITION

Pyridoxine Hydrochloride Tablets contain NLT 95.0% and NMT 115.0% of the labeled amount of pyridoxine hydrochloride ($C_8H_{11}NO_3 \cdot HCl$).

IDENTIFICATION

• A. REACTION WITH FERRIC ION

Sample: Equivalent to 100 mg of pyridoxine hydrochloride from a quantity of powdered Tablets

Analysis: Add 5 mL of water to the *Sample*. Shake the mixture, filter into a test tube, and add 2 or 3 drops of ferric chloride TS.

Acceptance criteria: An orange to deep red color is produced.

ASSAY

• PROCEDURE

Buffer: Dissolve 16 g of ammonium chloride in 70 mL of water, add 16 mL of ammonium hydroxide, dilute with water to 100 mL, and filter.

Color reagent: 0.4 mg/mL of 2,6-dichloroquinone chlorimide in isopropyl alcohol. [NOTE—Store the solution in a refrigerator, and use within one month. Do not use the solution if it has become pink.]

Standard stock solution: 0.1 mg/mL of [USP Pyridoxine Hydrochloride RS](#) in 0.1 N hydrochloric acid. [NOTE—Keep the solution in an amber bottle, in a cool place.]

Standard solution: 10 μ g/mL of [USP Pyridoxine Hydrochloride RS](#) from the *Standard stock solution* diluted with water. [NOTE—Prepare this solution daily as needed.]

Sample solution: Weigh and finely powder NLT 20 Tablets. Transfer, with the aid of water, a portion of the powdered Tablets to a conical flask. Add 0.5 mL hydrochloric acid per each mg of the nominal amount of pyridoxine hydrochloride taken, then dilute with water to about 0.04 mg/mL, and heat on a steam bath until disintegration is complete. Cool, dilute with water to 10 μ g/mL, and centrifuge a portion of the mixture.

Instrumental conditions

(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)

Mode: Visible

Analytical wavelength: 650 nm

Blank: Water

Analysis

Samples: *Standard solution* and *Sample solution*

Separately add 25.0 mL of isopropyl alcohol to 5 mL each of the *Standard solution* and the *Sample solution*. Transfer 5 mL of each of the resulting solutions to separate, glass-stoppered, 25-mL graduated cylinders or test tubes, and add in succession, mixing after each addition, 1.0 mL of *Buffer*, 1.0 mL of a 0.2-g/mL solution of sodium acetate, and 1.0 mL of water. Cool to 25°, add 1.0 mL of *Color reagent*, and shake vigorously for 10 s, accurately timed. Determine the absorbance 90 s after the addition of the *Color reagent*. Repeat the procedure both for the *Standard solution* and the *Sample solution*, but substitute 1.0 mL of a 50-mg/mL solution of boric acid solution for the 1.0 mL of water.

[NOTE—Make the reading promptly to avoid errors due to fading of the color.]

Calculate the percentage of the labeled amount of pyridoxine hydrochloride ($C_8H_{11}NO_3 \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (A_U - A_U') / (A_S - A_S') \times (C_S / C_U) \times 100$$

A_U = absorbance of *Sample solution* with water

A_U' = absorbance of *Sample solution* with boric acid

A_S = absorbance of *Standard solution* with water

A_s' = absorbance of *Standard solution* with boric acid C_s = concentration of [USP Pyridoxine Hydrochloride RS](#) in the *Standard solution* (μg/mL) C_u = nominal concentration of pyridoxine hydrochloride in the *Sample solution* (μg/mL)**Acceptance criteria:** 95.0%–115.0%**PERFORMANCE TESTS**

- [Dissolution, Procedure for a Pooled Sample\(711\)](#).

Medium: Water; 900 mL**Apparatus 2:** 50 rpm**Time:** 45 min**Mobile phase:** A mixture of methanol, glacial acetic acid, and water (27:1:73) containing 1.40 mg/mL of sodium 1-hexanesulfonate**Standard solution:** Known concentration of [USP Pyridoxine Hydrochloride RS](#) in *Medium***Sample solution:** Filtered portion of the solution under test, suitably diluted with *Medium* if necessary**Chromatographic system**(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 280 nm**Column:** 3.9-mm × 30-cm; packing L1**Flow rate:** 1 mL/min**Injection size:** 10 μL**System suitability****Sample:** *Standard solution***Suitability requirements****Relative standard deviation:** NMT 3.0%**Analysis****Samples:** *Standard solution* and *Sample solution*Calculate the percentage of the labeled amount of pyridoxine hydrochloride ($C_8H_{11}NO_3 \cdot HCl$) dissolved:

$$\text{Result} = (r_u/r_s) \times (C_s \times D \times V/L) \times 100$$

 r_u = peak area of pyridoxine from the *Sample solution* r_s = peak area of pyridoxine from the *Standard solution* C_s = concentration of [USP Pyridoxine Hydrochloride RS](#) in the *Standard solution* (mg/mL) D = dilution factor for the *Sample solution* V = volume of *Medium*, 900 mL L = label claim (mg/Tablet)**Tolerances:** NLT 75% (Q) of the labeled amount of pyridoxine hydrochloride ($C_8H_{11}NO_3 \cdot HCl$) is dissolved.

- [Uniformity of Dosage Units \(905\)](#): Meet the requirements

Content uniformity**Standard solution:** 10 μg/mL of [USP Pyridoxine Hydrochloride RS](#) in dilute hydrochloric acid (1 in 100)**Sample solution:** Transfer 1 Tablet, finely powdered, to a 500-mL volumetric flask containing 300 mL of water, shake for 30 min, and dilute with water to volume. Filter a portion of the mixture, discarding the first 25 mL of the filtrate. Dilute an aliquot of the filtrate with dilute hydrochloric acid (1 in 100) to obtain 10 μg/mL of pyridoxine hydrochloride.**Instrumental conditions**(See [Ultraviolet-Visible Spectroscopy \(857\)](#).)**Mode:** UV**Analytical wavelength:** 290 nm**Cell:** 1 cm**Blank:** Dilute hydrochloric acid (1 in 100)**Analysis**

Samples: Standard solution and Sample solution

Determine the absorbances of the Standard solution and Sample solution.

Calculate the percentage of pyridoxine hydrochloride ($C_8H_{11}NO_3 \cdot HCl$) in the portion of Tablets taken:

$$\text{Result} = (A_u/A_s) \times (C_s/C_u) \times (100/L)$$

 A_u = absorbance of the Sample solution A_s = absorbance of the Standard solution C_s = concentration of [USP Pyridoxine Hydrochloride RS](#) in the Standard solution (mg/mL) C_u = nominal concentration of pyridoxine hydrochloride in the Sample solution (mg/mL) L = label claim (mg/Tablet)**ADDITIONAL REQUIREMENTS**• **PACKAGING AND STORAGE:** Preserve in well-closed containers, protected from light.• **USP REFERENCE STANDARDS (11).**[USP Pyridoxine Hydrochloride RS](#)Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PYRIDOXINE HYDROCHLORIDE TABLETS	Natalia Davydova Scientific Liaison	NBDS2020 Non-botanical Dietary Supplements
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	NBDS2020 Non-botanical Dietary Supplements

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. PF 30(1)

Current DocID: GUID-70897B2D-D1A0-4EC6-8956-7681166F1D15_1_en-US**DOI: https://doi.org/10.31003/USPNF_M72070_01_01****DOI ref: [0nbl2](#)**