


Status: Currently Official on 16-Feb-2025
Official Date: Official as of 01-May-2021
Document Type: USP Monographs
DocId: GUID-79A86949-060E-4973-AC97-2DFA356BE908_6_en-US
DOI: https://doi.org/10.31003/USPNF_M71920_06_01
DOI Ref: t82ks

© 2025 USPC
Do not distribute

Pyrazinamide

To view the Notice from the Expert Committee that posted in conjunction with this accelerated revision, please click

<https://www.uspnf.com/rb-pyrazinamide-notice-20210430>.

$C_5H_5N_3O$ 123.12

Pyrazinecarboxamide CAS RN®: 98-96-4; UNII: 2KNI5N06TI.

DEFINITION

Change to read:

Pyrazinamide contains NLT ▲98.0%▲ (USP 1-May-2021) and NMT ▲102.0%▲ (USP 1-May-2021) of pyrazinamide ($C_5H_5N_3O$), calculated on the anhydrous basis.

IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197M

Change to read:

- B. ▲The retention time of the major peak of the *Sample solution* corresponds to that of the *Standard solution*, as obtained in the *Assay*.▲ (USP 1-May-2021)

Delete the following:

▲• C. PROCEDURE

Sample: 20 mg

Analysis: Boil the *Sample* with 5 mL of 5 N sodium hydroxide.

Acceptance criteria: The odor of ammonia is perceptible.▲ (USP 1-May-2021)

ASSAY

Change to read:

• **PROCEDURE**

▲Mobile phase: Transfer 2.0 g of tetrabutyl ammonium hydrogen sulphate to a 1000-mL volumetric flask. Add 800 mL of [water](#) and sonicate to dissolve. Add 2.0 mL of [ammonia water, 25 percent](#) and mix. Adjust with [10% phosphoric acid](#) to a pH of 6.8, and dilute with [water](#) to volume. Pass through a suitable filter of 0.45-μm pore size.

Diluent: [Water](#)

System suitability solution: 0.01 mg/mL of [USP Pyrazinamide RS](#) and 0.001 mg/mL of [USP Pyrazinamide Related Compound A RS](#) in *Diluent*

Standard stock solution: 1.0 mg/mL of [USP Pyrazinamide RS](#) in *Diluent*

Standard solution: 0.02 mg/mL of [USP Pyrazinamide RS](#) in *Diluent*, from *Standard stock solution*

Sample stock solution: 1.0 mg/mL of Pyrazinamide in *Diluent*

Sample solution: 0.02 mg/mL of Pyrazinamide in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 269 nm

Column: 4.6-mm × 15-cm; 5-μm packing [L1](#)

Column temperature: 25°

Flow rate: 1.0 mL/min

Injection volume: 20 µL

Run time: NLT 4.0 times the retention time of pyrazinamide

System suitability

Samples: System suitability solution and Standard solution

Suitability requirements

Resolution: NLT 3.0 between pyrazinamide and pyrazinamide related compound A, System suitability solution

Tailing factor: NMT 3.0, Standard solution

Relative standard deviation: NMT 1.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate the percentage of pyrazinamide ($C_5H_5N_3O$) in the portion of Pyrazinamide taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

r_U = peak response of pyrazinamide from the Sample solution

r_S = peak response of pyrazinamide from the Standard solution

C_S = concentration of [USP Pyrazinamide RS](#) in the Standard solution (mg/mL)

C_U = concentration of Pyrazinamide in the Sample solution (mg/mL)

Acceptance criteria: 98.0%–102.0% on the anhydrous basis ▲ (USP 1-May-2021)

IMPURITIES

- [RESIDUE ON IGNITION \(281\)](#): NMT 0.1%

Change to read:

- [ORGANIC IMPURITIES](#)

Mobile phase: Transfer 6.8 g of [potassium dihydrogen phosphate](#) to a 1000-mL volumetric flask. Add 800 mL of [water](#) and 1.84 g of [sodium hydroxide](#) and dissolve. Adjust with dilute [phosphoric acid](#) to a pH of 3.0, and dilute with [water](#) to volume. Add 10 mL of [acetonitrile](#) and 1 mL of [tetrahydrofuran](#) and mix.

Diluent: [Water](#)

System suitability solution: 0.08 mg/mL of [USP Pyrazinamide RS](#) and 0.004 mg/mL of [USP Pyrazinamide Related Compound B RS](#) in [Diluent](#)

Standard solution: 0.0002 mg/mL each of [USP Pyrazinamide RS](#) and [USP Pyrazinamide Related Compound A RS](#) and 0.0004 mg/mL of [USP Pyrazinamide Related Compound B RS](#) in [Diluent](#)

Sample solution: 0.4 mg/mL of Pyrazinamide in [Diluent](#)

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 270 nm

Column: 4.6-mm × 25-cm; 5-µm packing [L1](#)

Column temperature: 30°

Flow rate: 2.0 mL/min

Injection volume: 40 µL

Run time: NLT 5.2 times the retention time of pyrazinamide

System suitability

Samples: System suitability solution and Standard solution

[NOTE—See [Table 1](#) for relative retention times.]

Suitability requirements

Resolution: NLT 4.0 between pyrazinamide and pyrazinamide related compound B, System suitability solution

Relative standard deviation: NMT 10.0%, Standard solution

Analysis

Samples: Standard solution and Sample solution

Calculate separately the percentage of pyrazinamide related compound A, pyrazinamide related compound B, and any unspecified impurity in the portion of Pyrazinamide taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

r_u = peak response of pyrazinamide related compound A, pyrazinamide related compound B, or any unspecified impurity from the *Sample solution*

r_s = peak response of pyrazinamide, pyrazinamide related compound A, or pyrazinamide related compound B from the *Standard solution*

C_s = concentration of [USP Pyrazinamide RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Pyrazinamide in the *Sample solution* (mg/mL)

Acceptance criteria: See [Table 1](#). The reporting threshold is 0.003%.

Table 1

Name	Relative Retention Time	Acceptance Criteria, NMT (%)
Pyrazinamide related compound A ^a	0.56	0.05
Pyrazinamide	1.0	—
Pyrazinamide related compound B ^b	1.52	0.10
Any unspecified impurity	—	▲0.05▲ (RB 1-May-2021)
Total impurities	—	▲0.2▲ (RB 1-May-2021)

^a Pyrazinecarboxylic acid.

^b Pyrazinecarbonitrile.

▲ (USP 1-May-2021)

SPECIFIC TESTS

Delete the following:

▲ • [MELTING RANGE OR TEMPERATURE \(741\)](#): 188°–191° ▲ (USP 1-May-2021)

• [WATER DETERMINATION \(921\), Method I](#): NMT 0.5%

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in well-closed containers.

Change to read:

• [USP REFERENCE STANDARDS \(11\)](#).

[USP Pyrazinamide RS](#)

▲ [USP Pyrazinamide Related Compound A RS](#)

Pyrazinecarboxylic acid.

$\text{C}_5\text{H}_4\text{N}_2\text{O}_2$ 124.10

[USP Pyrazinamide Related Compound B RS](#)

Pyrazinecarbonitrile.

$\text{C}_5\text{H}_3\text{N}_3$ 105.10 ▲ (USP 1-May-2021)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PYRAZINAMIDE	Documentary Standards Support	SM12020 Small Molecules 1

Topic/Question	Contact	Expert Committee
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SM12020 Small Molecules 1

Chromatographic Database Information: [Chromatographic Database](#)

Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 45(6)

Current DocID: GUID-79A86949-060E-4973-AC97-2DFA356BE908_6_en-US

DOI: https://doi.org/10.31003/USPNF_M71920_06_01

DOI ref: t82ks

OFFICIAL