

Status: Currently Official on 16-Feb-2025  
Official Date: Official as of 01-Aug-2022  
Document Type: USP Monographs  
DocId: GUID-E004F593-4C53-4E2C-B3D3-D771BB6E8822\_3\_en-US  
DOI: [https://doi.org/10.31003/USPNF\\_M70920\\_03\\_01](https://doi.org/10.31003/USPNF_M70920_03_01)  
DOI Ref: zd4c1

© 2025 USPC  
Do not distribute

## Propranolol Hydrochloride and Hydrochlorothiazide Tablets

### DEFINITION

Propranolol Hydrochloride and Hydrochlorothiazide Tablets contain NLT 90.0% and NMT 110.0% of the labeled amounts of propranolol hydrochloride ( $C_{16}H_{21}NO_2 \cdot HCl$ ) and hydrochlorothiazide ( $C_7H_8ClN_3O_4S_2$ ).

### IDENTIFICATION

#### Change to read:

- A. ▲ The retention times of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the Assay.▲

(USP 1-Aug-2022)

#### Change to read:

- B. ▲ The UV spectrum of the major peaks of the *Sample solution* correspond to those of the *Standard solution*, as obtained in the Assay.▲ (USP 1-Aug-2022)

### ASSAY

#### Change to read:

##### • PROCEDURE

**Solution A:** ▲ Tetrabutylammonium hydroxide, 40% in water.▲ (USP 1-Aug-2022)

**Buffer:** Dissolve 6.8 g of monobasic potassium phosphate in 1000 mL of water. Add 3.4 mL of phosphoric acid and a volume of *Solution A* equivalent to 2.6 g of tetrabutylammonium hydroxide, and dilute with water to 2000 mL. Adjust, if necessary, with phosphoric acid or 10 N potassium hydroxide to a pH of 2.5.▲ (USP 1-Aug-2022)

**Mobile phase:** Methanol and *Buffer* (15:85).▲ (USP 1-Aug-2022)

**Standard solution A:** 0.25 mg/mL of USP Hydrochlorothiazide RS prepared as follows. Transfer 25 mg of USP Hydrochlorothiazide RS to a 100-mL volumetric flask. Add 15 mL of methanol, and dilute with *Buffer* to volume.

**Standard solution B:** Dissolve a quantity of USP Propranolol Hydrochloride RS in *Mobile phase* to obtain a solution having a known concentration of 0.25J mg/mL, with J being the ratio of the labeled quantity, in milligrams, of propranolol hydrochloride to the labeled quantity, in milligrams, of hydrochlorothiazide per Tablet.

**Standard solution:** 50 µg/mL of USP Hydrochlorothiazide RS and 50J µg/mL of USP Propranolol Hydrochloride RS in *Mobile phase* prepared as follows. Mix 5.0 mL of *Standard solution A* and 5.0 mL of *Standard solution B* in a 25-mL volumetric flask, and dilute with *Mobile phase* to volume.

**Sample solution:** Nominally 50 µg/mL of hydrochlorothiazide prepared as follows. Transfer an equivalent to 25 mg of hydrochlorothiazide, from finely powdered Tablets (NLT 20), to a 500-mL volumetric flask. Add 5 mL of water, mix, and allow to stand for 5 min, with occasional swirling. Add 75 mL of methanol, mix, and sonicate for 10 min, with occasional swirling, adding ice to the bath, if necessary, to maintain the temperature at NMT 20°. Add about 350 mL of *Buffer* to the flask, and sonicate for 10 min, with occasional swirling, maintaining the temperature of the bath at NMT 20°. Dilute with *Buffer* to volume. Centrifuge a portion of this solution, if necessary, to obtain a clear solution.

### Chromatographic system

(See Chromatography (621), System Suitability.)

**Mode:** LC

**Detector:** UV 270 nm. ▲ For *Identification B*, use a diode array detector in the range of 200–400 nm.▲ (USP 1-Aug-2022)

**Column:** 4-mm × 15-cm; 5-µm packing L1

**Flow rate:** 1.5 mL/min

**Injection volume:** 50 µL

**▲Run time:** NLT 3 times the retention time of propranolol▲ (USP 1-Aug-2022)

**System suitability****Sample:** Standard solution

[NOTE—The relative retention times for ▲ (USP 1-Aug-2022) hydrochlorothiazide and propranolol are about ▲ (USP 1-Aug-2022) 0.4 and 1.0, respectively.]

**Suitability requirements**

▲ (USP 1-Aug-2022)

**Tailing factor:** NMT 1.5 for the propranolol and hydrochlorothiazide peaks**Relative standard deviation:** NMT ▲ 1.0% for the propranolol and hydrochlorothiazide peaks▲ (USP 1-Aug-2022)**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of labeled amount of propranolol hydrochloride ( $C_{16}H_{21}NO_2 \cdot HCl$ ) and hydrochlorothiazide ( $C_7H_8ClN_3O_4S_2$ ) in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times 100$$

$r_U$  = peak response of propranolol or hydrochlorothiazide from the *Sample solution*

$r_S$  = peak response of propranolol or hydrochlorothiazide from the *Standard solution*

$C_S$  = concentration of [USP Propranolol Hydrochloride RS](#) or [USP Hydrochlorothiazide RS](#) in the *Standard solution* ( $\mu\text{g/mL}$ )

$C_U$  = nominal concentration of propranolol hydrochloride or hydrochlorothiazide in the *Sample solution* ( $\mu\text{g/mL}$ )

**Acceptance criteria:** 90.0%–110.0%**PERFORMANCE TESTS****Change to read:**

- [DISSOLUTION \(711\)](#)

**Medium:** 0.01 N [hydrochloric acid](#), 900 mL**Apparatus 1:** 100 rpm**Time:** 30 min

▲ [NOTE—Analyze the sample under test using either the *Instrumental procedure* or *Chromatographic procedure*.]

**Instrumental procedure**▲ (USP 1-Aug-2022)

**Standard solution:** Transfer a mixture of 5.0 mL of an aqueous solution having a known concentration of [USP Propranolol Hydrochloride RS](#) and 5.0 mL of a 0.005 N sodium hydroxide solution having a known concentration of [USP Hydrochlorothiazide RS](#) to a suitable capped bottle, and add 5.0 mL of [water](#), 1.0 mL of 5 N [sodium hydroxide](#), and 25.0 mL of [n-heptane](#). Cap the bottle, shake by mechanical means for 5 min, and allow the layers to separate, centrifuging if necessary, to obtain clear upper (*n*-heptane) and lower (aqueous) extracts.

**Sample solution:** Filter a portion of the solution under test, transfer 10.0 mL of the filtrate to a suitable capped bottle, and add 5.0 mL of [water](#), 1.0 mL of 5 N [sodium hydroxide](#), and 25.0 mL of [n-heptane](#). Cap the bottle, shake by mechanical means for 5 min, and allow the layers to separate, centrifuging if necessary, to obtain clear upper (*n*-heptane) and lower (aqueous) extracts.

**Blank solution:** Transfer 10.0 mL of [water](#) to a suitable capped bottle, and add 5.0 mL of [water](#), 1.0 mL of 5 N [sodium hydroxide](#), and 25.0 mL of [n-heptane](#). Cap the bottle, shake by mechanical means for 5 min, and allow the layers to separate, centrifuging if necessary, to obtain clear upper (*n*-heptane) and lower (aqueous) extracts.

**Instrumental conditions****Mode:** UV**Analytical wavelength:** 293 nm for *n*-heptane layer (propranolol hydrochloride); 273 nm for aqueous layer (hydrochlorothiazide)**Analysis****Samples:** Standard solution, Sample solution, and Blank solution

▲ Calculate the percentage of the labeled amount of propranolol hydrochloride ( $C_{16}H_{21}NO_2 \cdot HCl$ ) dissolved:

$$\text{Result} = (A_U/A_S) \times C_S \times V \times (1/L) \times D \times 100$$

$A_U$  = absorbance from the *Sample solution*

$A_S$  = absorbance from the *Standard solution*

$C_s$  = concentration of [USP Propranolol Hydrochloride RS](#) in the *Standard solution* (mg/mL)

$V$  = volume of *Medium*, 900 (mL)

$L$  = label claim for propranolol hydrochloride (mg/Tablet)

$D$  = dilution factor for *Sample solution*, 2.5

Calculate the percentage of the labeled amount of hydrochlorothiazide ( $C_7H_8ClN_3O_4S_2$ ) dissolved:

$$\text{Result} = (A_u/A_s) \times C_s \times V \times (1/L) \times D \times 100$$

$A_u$  = absorbance from the *Sample solution*

$A_s$  = absorbance from the *Standard solution*

$C_s$  = concentration of [USP Hydrochlorothiazide RS](#) in the *Standard solution* (mg/mL)

$V$  = volume of *Medium*, 900 (mL)

$L$  = label claim for hydrochlorothiazide (mg/Tablet)

$D$  = dilution factor for *Sample solution*, 1.6

### Chromatographic procedure

**Buffer:** Dissolve 6.8 g of [monobasic potassium phosphate](#) in 1000 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 3.5.

**Mobile phase:** [Methanol](#) and *Buffer* (10:90)

**Diluent 1:** 0.01 N [hydrochloric acid](#)

**Diluent 2:** [Methanol](#) and 0.01 N [hydrochloric acid](#) (10:90)

**Standard stock solution A:** 0.8 mg/mL of [USP Propranolol Hydrochloride RS](#) in [methanol](#)

**Standard stock solution B:** 0.25 mg/mL of [USP Hydrochlorothiazide RS](#) in [methanol](#)

**Standard solution:** 0.04 mg/mL of [USP Propranolol Hydrochloride RS](#) and 0.0125 mg/mL of [USP Hydrochlorothiazide RS](#) in *Diluent 1* from *Standard stock solution A* and *Standard stock solution B*, respectively

**Sample solution:** Pass a portion of the solution under test through a suitable filter of 0.45- $\mu$ m pore size. Dilute 5.0 mL of the filtrate with 5.0 mL of *Diluent 2*. Mix.

### Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

**Mode:** LC

**Detector:** UV 226 nm

**Column:** 4.6-mm  $\times$  15-cm; 5- $\mu$ m packing [L10](#)

**Column temperature:** 35°

**Flow rate:** 2 mL/min

**Injection volume:** 20  $\mu$ L

**Run time:** NLT 1.5 times the retention time of propranolol

### System suitability

**Sample:** *Standard solution*

### Suitability requirements

**Resolution:** NLT 4.0 between propranolol and hydrochlorothiazide

**Relative standard deviation:** NMT 2.0% for propranolol and hydrochlorothiazide

### Analysis

**Samples:** *Standard solution* and *Sample solution*

Calculate the percentage of the labeled amount of propranolol hydrochloride ( $C_{16}H_{21}NO_2 \cdot HCl$ ) and the labeled amount of hydrochlorothiazide ( $C_7H_8ClN_3O_4S_2$ ) dissolved:

$$\text{Result} = (r_u/r_s) \times C_s \times V \times D \times (1/L) \times 100$$

$r_u$  = peak response of propranolol or hydrochlorothiazide from the *Sample solution*

$r_s$  = peak response of propranolol or hydrochlorothiazide from the *Standard solution*

$C_s$  = concentration of [USP Propranolol Hydrochloride RS](#) or [USP Hydrochlorothiazide RS](#) in the *Standard solution* (mg/mL)

*V* = volume of *Medium*, 900 mL

*D* = dilution factor of the *Sample solution*, 2

*L* = label claim (mg/Tablet)▲ (USP 1-Aug-2022)

**Tolerances:** NLT 80% (Q) of the labeled amount of propranolol hydrochloride ( $C_{16}H_{21}NO_2 \cdot HCl$ ) and NLT 80% (Q) of the labeled amount of hydrochlorothiazide ( $C_7H_8ClN_3O_4S_2$ ) are dissolved.

**Change to read:**

- **UNIFORMITY OF DOSAGE UNITS (905):** Meet the requirements ▲ (USP 1-Aug-2022)

## IMPURITIES

**Change to read:**

- **ORGANIC IMPURITIES**

▲**Buffer:** Dissolve 5.75 g of [monobasic ammonium phosphate](#) in 1000 mL of [water](#). Adjust with [phosphoric acid](#) to a pH of 3.0.

**Mobile phase:** [Acetonitrile](#), [methanol](#), and *Buffer* (15:10:75)

**Standard stock solution A:** 4.0 mg/mL of [USP Propranolol Hydrochloride RS](#) in *Mobile phase*. Sonicate to dissolve, if necessary.

**Standard stock solution B:** 2.5 mg/mL of [USP Hydrochlorothiazide RS](#) prepared as follows. Transfer an appropriate amount of [USP Hydrochlorothiazide RS](#) into a suitable volumetric flask. Add [methanol](#) to 20% of the flask volume and sonicate. Dilute with *Mobile phase* to volume.

**Standard stock solution C:** 0.05 mg/mL of [USP Benzothiadiazine Related Compound A RS](#) in *Mobile phase*. Sonicate to dissolve, if necessary.

**Standard stock solution D:** 0.025 mg/mL of [USP Chlorothiazide RS](#) in *Mobile phase*. Sonicate to dissolve, if necessary.

**System suitability solution:** 0.2 mg/mL of [USP Propranolol Hydrochloride RS](#), 0.125 mg/mL of [USP Hydrochlorothiazide RS](#), 1.25 µg/mL of [USP Benzothiadiazine Related Compound A RS](#), and 0.625 µg/mL of [USP Chlorothiazide RS](#) in *Mobile phase* from **Standard stock solution A**, **Standard stock solution B**, **Standard stock solution C**, and **Standard stock solution D**, respectively

**Standard solution:** 2.0 µg/mL of [USP Propranolol Hydrochloride RS](#) and 0.625 µg/mL of [USP Hydrochlorothiazide RS](#) in *Mobile phase* from **Standard stock solution A** and **Standard stock solution B**, respectively

**Sensitivity solution:** 0.2 µg/mL of [USP Propranolol Hydrochloride RS](#) and 0.0625 µg/mL of [USP Hydrochlorothiazide RS](#) in *Mobile phase* from the **Standard solution**

**Sample stock solution:** Nominally the concentrations given in [Table 1](#) are prepared as follows. Transfer NLT 10 Tablets into a suitable volumetric flask. Add *Mobile phase* to at least 70% volume of the flask and sonicate. Mix well and dilute with *Mobile phase* to volume. Centrifuge and use the supernatant.

**Table 1**

| <b>Tablet Strength</b><br><b>Propranolol</b><br><b>Hydrochloride/Hydrochlorothiazide</b><br><b>(mg/mg)</b> | <b>Nominal Concentration of</b><br><b>Propranolol Hydrochloride</b><br><b>(mg/mL)</b> | <b>Nominal Concentration of</b><br><b>Hydrochlorothiazide</b><br><b>(mg/mL)</b> |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 40/25                                                                                                      | 4                                                                                     | 2.5                                                                             |
| 80/25                                                                                                      | 4                                                                                     | 1.25                                                                            |

**Sample solution:** Nominal concentrations in *Mobile phase* from the **Sample stock solution** are given in [Table 2](#).

**Table 2**

| <b>Tablet Strength</b><br><b>Propranolol</b><br><b>Hydrochloride/Hydrochlorothiazide</b><br><b>(mg/mg)</b> | <b>Nominal Concentration of</b><br><b>Propranolol Hydrochloride</b><br><b>(mg/mL)</b> | <b>Nominal Concentration of</b><br><b>Hydrochlorothiazide</b><br><b>(mg/mL)</b> |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 40/25                                                                                                      | 0.2                                                                                   | 0.125                                                                           |
| 80/25                                                                                                      | 0.2                                                                                   | 0.063                                                                           |

**Chromatographic system**

(See [Chromatography \(621\), System Suitability](#).)**Mode:** LC**Detector:** UV 233 nm for degradation products related to propranolol and UV 272 nm for degradation products related to hydrochlorothiazide**Column:** 4.6-mm × 15-cm; 3-μm packing [L1](#)**Column temperature:** 35°**Flow rate:** 1 mL/min**Injection volume:** 25 μL**Run time:** NLT 2.5 times the retention time of propranolol**System suitability****Samples:** System suitability solution, Sensitivity solution, and Standard solution[NOTE—See [Table 1](#) for the relative retention times.]**Suitability requirements****Resolution:** NLT 1.5 between benzothiadiazine related compound A and chlorothiazide at both 233 and 272 nm, System suitability solution**Relative standard deviation:** NMT 5.0% for propranolol and hydrochlorothiazide, Standard solution**Signal-to-noise ratio:** NLT 10 for propranolol and hydrochlorothiazide, Sensitivity solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of any unspecified degradation product related to propranolol in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 $r_U$  = peak response of any unspecified degradation product from the Sample solution $r_S$  = peak response of propranolol from the Standard solution $C_S$  = concentration of [USP Propranolol Hydrochloride RS](#) in the Standard solution (μg/mL) $C_U$  = nominal concentration of propranolol hydrochloride in the Sample solution (μg/mL) $F$  = relative response factor (see [Table 3](#))

Calculate the percentage of benzothiadiazine related compound A and any unspecified degradation products related to hydrochlorothiazide in the portion of Tablets taken:

$$\text{Result} = (r_U/r_S) \times (C_S/C_U) \times (1/F) \times 100$$

 $r_U$  = peak response of benzothiadiazine related compound A or unspecified degradation product from the Sample solution $r_S$  = peak response of hydrochlorothiazide from the Standard solution $C_S$  = concentration of [USP Hydrochlorothiazide RS](#) in the Standard solution (μg/mL) $C_U$  = nominal concentration of hydrochlorothiazide in the Sample solution (μg/mL) $F$  = relative response factor (see [Table 3](#))**Acceptance criteria:** See [Table 3](#). The reporting threshold is 0.1%.**Table 3**

| Name                                | Relative Retention Time | Relative Response Factor | Acceptance Criteria, NMT (%) |
|-------------------------------------|-------------------------|--------------------------|------------------------------|
| Benzothiadiazine related compound A | 0.12                    | 0.71                     | 1.0                          |
| Chlorothiazide <sup>a</sup>         | 0.14                    | —                        | —                            |

| Name                                             | Relative Retention Time | Relative Response Factor | Acceptance Criteria, NMT (%) |
|--------------------------------------------------|-------------------------|--------------------------|------------------------------|
| Hydrochlorothiazide                              | 0.15                    | —                        | —                            |
| Propranolol                                      | 1.0                     | —                        | —                            |
| Any unspecified degradation product <sup>b</sup> | —                       | 1.0 <sup>c</sup>         | 0.2                          |
| Total degradation products                       | —                       | —                        | 1.5▲ (USP 1-Aug-2022)        |

<sup>a</sup> For resolution measurement only.

<sup>b</sup> For any unspecified degradation product detected at 233 and 272 nm.

<sup>c</sup> The relative response factor of 1.0 is assigned for any unspecified degradation product detected at 233 and 272 nm.

## ADDITIONAL REQUIREMENTS

### Change to read:

- **PACKAGING AND STORAGE:** Preserve in well-closed containers. ▲Store at controlled room temperature.▲ (USP 1-Aug-2022)

### Change to read:

- **USP REFERENCE STANDARDS (11).**

[USP Benzothiadiazine Related Compound A RS](#)

4-Amino-6-chloro-1,3-benzenedisulfonamide.

C6H8ClN3O4S2 285.73

▲ [USP Chlorothiazide RS](#) ▲ (USP 1-Aug-2022)

[USP Hydrochlorothiazide RS](#)

[USP Propranolol Hydrochloride RS](#)

**Auxiliary Information** - Please [check for your question in the FAQs](#) before contacting USP.

| Topic/Question                                            | Contact                                                                     | Expert Committee          |
|-----------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|
| PROPRANOLOL HYDROCHLORIDE AND HYDROCHLOROTHIAZIDE TABLETS | <a href="#">Documentary Standards Support</a>                               | SM22020 Small Molecules 2 |
| REFERENCE STANDARD SUPPORT                                | RS Technical Services<br><a href="mailto:RSTECH@usp.org">RSTECH@usp.org</a> | SM22020 Small Molecules 2 |

**Chromatographic Database Information:** [Chromatographic Database](#)

### Most Recently Appeared In:

Pharmacopeial Forum: Volume No. 47(2)

**Current DocID: GUID-E004F593-4C53-4E2C-B3D3-D771BB6E8822\_3\_en-US**

**DOI:** [https://doi.org/10.31003/USPNF\\_M70920\\_03\\_01](https://doi.org/10.31003/USPNF_M70920_03_01)

**DOI ref:** [zd4c1](#)