

Status: Currently Official on 18-Feb-2025
 Official Date: Official as of 01-Dec-2022
 Document Type: NF Monographs
 DocId: GUID-E06EA753-26F0-48FE-A50A-B7369A0C32EC_4_en-US
 DOI: https://doi.org/10.31003/USPNF_M70445_04_01
 DOI Ref: 9g7gd

© 2025 USPC
 Do not distribute

Propionic Acid

Change to read:

▲C₃H₆O₂ 74.08

Propanoic acid;

Propionic acid CAS RN®: 79-09-4.▲ (NF 1-Dec-2022)

Change to read:

DEFINITION

Propionic Acid contains ▲NLT 97.0% and NMT 102.0%▲ (NF 1-Dec-2022) of propionic acid (C₃H₆O₂).

Add the following:

▲IDENTIFICATION

- A. [SPECTROSCOPIC IDENTIFICATION TESTS \(197\), Infrared Spectroscopy](#): 197F
- B. [CHROMATOGRAPHIC IDENTITY](#)

Analysis: Examine the chromatograms obtained in the Assay.

Acceptance criteria: The retention time of major peak of the *Sample solution* corresponds to that of the *Standard solution*.▲ (NF 1-Dec-2022)

ASSAY

Change to read:

• [PROCEDURE](#)

▲Solution A: 10 mM [potassium phosphate, monobasic](#), with the pH adjusted to 2.5 using [phosphoric acid](#)

Solution B: [Acetonitrile](#)

Mobile phase: See [Table 1](#).

Table 1

Time (min)	Solution A (%)	Solution B (%)
0	100	0
3.0	100	0
15.0	70	30
25.0	50	50
26.0	100	0
35.0	100	0

Diluent: 2% (v/v) [phosphoric acid](#) in water

System suitability solution: 2.0 mg/mL of [USP Propionic Acid RS](#) and 0.008 mg/mL of acrylic acid in *Diluent*

Standard solution: 2.0 mg/mL of [USP Propionic Acid RS](#) in *Diluent*

Sample solution: 2.0 mg/mL of Propionic Acid in *Diluent*

Chromatographic system

(See [Chromatography \(621\), System Suitability](#).)

Mode: LC

Detector: UV 210 nm**Column:** 4.6-mm × 25-cm; 5-μm packing [L1](#)**Column temperature:** 45°**Flow rate:** 1.0 mL/min**Injection volume:** 20 μL**Run time:** 35 min**System suitability****Samples:** System suitability solution and Standard solution[NOTE—The approximate relative retention times for related substances are listed in [Table 2](#).]**Suitability requirements****Resolution:** NLT 1.5 between the propionic acid peak and the acrylic acid peak, System suitability solution**Tailing factor:** NMT 2, determined from the propionic acid peak, Standard solution**Relative standard deviation:** NMT 1%, determined from the propionic acid peak, Standard solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of the Propionic Acid in the portion of sample taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times 100$$

 r_u = peak area of propionic acid from the Sample solution r_s = peak area of propionic acid from the Standard solution C_s = concentration of [USP Propionic Acid RS](#) in the Standard solution (mg/mL) C_u = concentration of Propionic Acid in the Sample solution (mg/mL)**Acceptance criteria:** 97.0%–102.0%▲ (NF 1-Dec-2022)**IMPURITIES****Add the following:****▲• Organic Impurities****Mobile phase, Diluent, System suitability solution, and Chromatographic system:** Proceed as directed in the Assay.**Sensitivity solution:** 0.008 mg/mL of [USP Propionic Acid RS](#) in Diluent**Standard solution:** 0.016 mg/mL of [USP Propionic Acid RS](#) in Diluent**Sample solution:** 16 mg/mL of Propionic Acid in Diluent**System suitability****Samples:** System suitability solution, Sensitivity solution, and Standard solution[NOTE—The approximate relative retention times for related substances are listed in [Table 2](#).]**Table 2**

Name	Relative Retention Time
Acetic acid	0.5
Acrylic acid	0.95
Propionic acid	1.0

Suitability requirements**Resolution:** NLT 1.5 between the propionic acid peak and the acrylic acid peak, System suitability solution**Relative standard deviation:** NMT 5.0%, determined from the propionic acid peak, Standard solution**Signal-to-noise ratio:** NLT 10, determined from the propionic acid peak, Sensitivity solution**Analysis****Samples:** Standard solution and Sample solution

Calculate the percentage of each individual impurity in the portion of sample taken:

$$\text{Result} = (r_u/r_s) \times (C_s/C_u) \times (1/F) \times 100$$

 r_u = peak response of each individual impurity from the Sample solution r_s = peak area of propionic acid from the Standard solution

C_s = concentration of [USP Propionic Acid RS](#) in the *Standard solution* (mg/mL)

C_u = concentration of Propionic Acid in the *Sample solution* (mg/mL)

F = relative response factor (see [Table 3](#))

Acceptance criteria: See [Table 3](#).

Table 3

Name	Relative Response Factor	Acceptance Criteria, NMT (%)
Acetic acid	1.0	0.2
Acrylic acid	90.0	0.1
Propionic acid	—	—
Any unidentified individual impurity	1.0	0.2
Total impurities	—	1.0▲ (NF 1-Dec-2022)

• **LIMIT OF NONVOLATILE RESIDUE:** Evaporate 20 g of Propionic Acid in a tared dish, and dry at 105° for 1 h: the weight of the residue does not exceed 2.0 mg.

LIMIT OF ALDEHYDES

Sample solution: Transfer 10.0 mL of Propionic Acid to a glass-stoppered 250-mL conical flask containing 50 mL of water and 10.0 mL of sodium bisulfite solution (1 in 80), insert the stopper, and shake vigorously. Allow the mixture to stand for 30 min.

Blank: Add 50 mL of water and 10.0 mL of sodium bisulfite solution (1 in 80) to a glass-stoppered 250-mL conical flask, insert the stopper, and shake vigorously. Allow the mixture to stand for 30 min.

Titrimetric system

(See [Titrimetry \(541\)](#).)

Mode: Residual titration

Titrant: 0.1 N iodine VS

Endpoint detection: Visual

Analysis: Titrate the *Sample solution* and the *Blank* with *Titrant* to the same brownish-yellow endpoint.

Acceptance criteria: The difference between the volume of 0.1 N iodine required for the *Blank* and that required for the *Sample solution* is NMT 1.75 mL.

SPECIFIC TESTS

• **DISTILLING RANGE (721), Method I:** 138.5°–142.5°

• **SPECIFIC GRAVITY (841):** 0.988–0.993

• **READILY OXIDIZABLE SUBSTANCES**

Sample solution: Dissolve 15 g of sodium hydroxide in 50 mL of water. Cool, add 6 mL of bromine, stirring to effect complete solution, and dilute with water to 2000 mL. Transfer 25.0 mL of this solution to a glass-stoppered 250-mL conical flask containing 100 mL of water, and add 10 mL of sodium acetate solution (1 in 5) and 10.0 mL of Propionic Acid. Allow to stand for 15 min, and add 5 mL of potassium iodide solution (1 in 4) and 10 mL of hydrochloric acid.

Blank: Dissolve 15 g of sodium hydroxide in 50 mL of water. Cool, add 6 mL of bromine, stirring to effect complete solution, and dilute with water to 2000 mL. Transfer 25.0 mL of this solution to a glass-stoppered 250-mL conical flask containing 100 mL of water, and add 10 mL of sodium acetate solution (1 in 5). Allow to stand for 15 min, and add 5 mL of potassium iodide solution (1 in 4) and 10 mL of hydrochloric acid.

Titrimetric system

(See [Titrimetry \(541\)](#).)

Mode: Residual titration

Titrant: 0.1 N sodium thiosulfate VS

Endpoint detection: Visual

Analysis: Titrate the *Sample solution* and the *Blank* with *Titrant* just to the disappearance of the brown color.

Acceptance criteria: The difference between the volume of 0.1 N sodium thiosulfate required for the *Blank* and that required for the *Sample solution* is NMT 2.2 mL.

ADDITIONAL REQUIREMENTS

• **PACKAGING AND STORAGE:** Preserve in tight containers.

Add the following:**▲. [USP REFERENCE STANDARDS \(11\)](#)**

USP Propionic Acid RS▲ (NF 1-Dec-2022)

Auxiliary Information - Please [check for your question in the FAQs](#) before contacting USP.

Topic/Question	Contact	Expert Committee
PROPIONIC ACID	Documentary Standards Support	SE2020 Simple Excipients
REFERENCE STANDARD SUPPORT	RS Technical Services RSTECH@usp.org	SE2020 Simple Excipients

Chromatographic Database Information: [Chromatographic Database](#)**Most Recently Appeared In:**

Pharmacopeial Forum: Volume No. 46(6)

Current DocID: [GUID-E06EA753-26F0-48FE-A50A-B7369A0C32EC_4_en-US](#)**DOI: https://doi.org/10.31003/USPNF_M70445_04_01****DOI ref: [9g7gd](#)**

OFFICIAL